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ABSTRACT

A constitutive microdamage model is developed capable of simulating high shock
compression, release, dilatation (tension), and microdamage evolution lezding possibly to
fracture and penetration of targets after hypervelocity impact. The microdamage
constitutive model is applicable to polycrystalline metals and is appropriate in the lower
range of hypervelocity impact velocity, i.e. approximately 2-7 Km/s, over which the
projectile and target materials remain in the s‘olid state. The model implements the Mie-
Gruneisen equation of state coupled with the Hugoniot relations along with expressions
of non-linear elastic moduli (bulk and shear) as functions of volume strain, temperature
and microdamage. The viscoplastic material response includes strain and strain rate
hardening and temperature and microdamage softening. The microdamage evolution
model is based on the micromechanics of an expanding void, and is capable of modeling
void compaction and expansion that leads to spall-fracture as an evolutionary time
dependent process. The constitutive microdamage model was imp!zmented in the
Autodyn™ software and a series of computer simulations of hypervelocity impact
experiments on Aljjo plates with soda-lime glass spherical projectiles were conducted.
The results of the simulations are compared with the laboratory experimental resuits in

terms of crater, penetration hole and back-wall spallation geometry of the target plate.
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STATEMENT OF PROBLEM

The importance of a reliable constitutive model to describe the deformation
process and the eventual material degradation and fracture after hypervelocity impact has
become of primary interest in the last decade. The deployment of low earth orbit
satellites capable of surviving high velocity impacts by micro-meteoroids and small
orbital space debris has been and continues to be the subject of extensive research. In
addition, the eventual construction of the International Space Station will put to test the
extensive experimental and theoretical research being developed in the area of
hypervelocity impact phenomena. Furthermore, the importance of this area of research is
not limited to the aerospace industry. The US Defense Department has always
recognized the relevance of an in-depth understanding of the armor penetration process to |
aid in the design of armor structures and armor penetration devices.

In recent years there have been significant research efforts directed towards the
development of constitutive models that simulate crater formation, spall fracture and
penetration as a result of a hypervelocity impact. Many of these models have been
implemented and built into several public domain and commercial software packages that
are available today (Steinberg er al. 1980 and 1989, Johnson et al. 1983, Zerilli et al.
1987). However, these constitutive models have known limitations. The most important
limitation has to do with the modeling of the dynamic failure process where, in most
cases, fracture is assumed to take place instantaneously without prior accumulation of

material micro-degradation. The development of more sophisticated constitutive models

vii
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that can describe failure is crucial for the problem of modeling the physical processes
associated with hypervelocity impact events, especially in relation to the design of aﬁnor,
armor penetrators, debris-shield design and other applications where the lethality of the
impact is a design-controlling factor (e.g., hypervelocity impact destruction of incoming
ballistic warhead).

It is the goal of this dissertation to develop a constitutive-microdamage model that
can describe the thermo-mechanical deformation associated with high shock
compression, release, dilatation and shear, and the progressive microdamage that leads to

fracture of ductile polycrystalline materials.
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CHAPTER 1

INTRODUCTION

The physical features of projectile-target -ollisions at very high velocities are
varied and depend ﬁpon the interplay of major controlling geometric and physical
parameters such as the velocity of impact, the relative dimensions of the target thickness
and the projectile diameter, and the material properties of the target and the projectile.
There are many damage scenarios that can be identified, ranging from target crater
formation to target perforation, where for the latter situation at very high projectile
velocities it 1s possible to have target and projectile fragmentation and debris cloud
formation, while for still higher velocities melting and vaporization of portions of the
projectile and target materials are also possible (Anderson et al. 1993, Horz et al. 1995). |

Spherical projectiles traveling at velocities varyiﬁg from 2 to 7 km/s can, upon
impact, produce spherical shock waves of compression and shear with pressures ranéing
from 10-150 GPa, that propagate into both the ta~get and projectile at very high strain
rates of the order of 108-10® s'. Transmission electron microscopy has shown evidence
of varied arrays of deformation-induced defects and, in some cases, dynamic
recrystallization immediately below the impact surface of several metallic targets at the
higher end of the impact velocity range, indicating substantial temperature increases in
both the target and projectile (Rivas et al. 1995, Quifiones et al. 1998). The transit time

of the wave propagation and thermomechanical material response across the target

thickness is of the order a couple of microseconds (us), implying essentially adiabatic
1
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deformation. Because of thermomechanical coupling associated with the substantial
dilatational and shear deformations, the highly deformed thermally softened region
beneath the contact surface of the target provides the displaced material that forms the
surface crater ring and ejecta. For the target material below the crater, a competing effect
develops between the strain hardening and thermal softening effects as evidenced by the
measured vickers microhardness profiles (Quifiones er al. 1998). Further across the
target thickness, the attenuated shock wave produces a reflected tensile wave traveling
back from the rear surface of the target. If the tensile mean stress reaches a threshold
value the growth and/or nucleation of voids can begin, producing mechanical softening of
the material and possibly coalescence of voids leading to fracture (Curran et al. 1987).
The development of computer codes capable of predicting the deformation and
damage processes produced by hypervelocity impact have evolved from being very
rudimentary in the 50’s and 60’s, to very sophisticated at this time. One of the initial
limitations of these codes was the absence of shear deformation considerations in the
simulation algorithms. The development of more sophisticated instrumentation for the
experimental characterization of the deformation process under.shock loading (Meyers
1994) has improved our understanding of the hypervelocity impact problem, and witH the
advent of high speed computers that use more sophisticated material models and
numerical algorithms, the applicability of the computer codes has been extended. Now,
computer simulations of high-rate deformation processes are being used in industry as
well as in military and aerospace applications as part of the design process.

Unfortunately, one of the limitations that still lingers in high shock compression
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computer codes is the poor constitutive modeling of the dynamic fracture process, where
it is often assumed that fracture occurs instantaneously without prior evolution of the

material degradation.

1.1 Background

The following is a brief discussion of the research articles that form the base for

the research work presented in this dissertation. The literature review is presented in

chronological order.

1.1.1 Constitutive Models

The articles discussed in this section deal specifically with two topics: pressure-
volume relations and yield models (in the Von Mises sense) of polycrystalline metals. |
The pressure-volume relations discussed are for pressures up to 10 TPa. The dynamic
yield models varied in complexity from perfectly plastic rate-independent to viscoplastic
with strain hardening and thermal softening.

Walsh er al. (1957) presented an extensive compilation of material parameters
that describe the Hugoniot curves, Mie-Gruneisen pressure volume relations and the
volume strain dependence of the Gruneisen coefficient for shock pressures of up to 400
kbars (40GPa).

Kratochvil et al. (1969,1970) proposed an elastic-viscoplastic constitutive model

that described strain and strain rate hardening as thermodynamic functions that described

the movement and interaction of microstructural defects.
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Davison er al. (1979) presented a very thorough exposition of the then status of
investigations concerning the response of solids to shock compression. They described
the mechanical and structural behavior of materials under shock loading beginning with
the elastic response, the pressure-volume relations, hydrodynamic approximation té the
response of solids, piastic response and finally spall fracture. They also described the
electrical, magnetic and optical properties of solids under shock loading.

Steinberg et al. (1980) proposed a constitutive model applicable at high strain
rates. The constitutive equation models viscoplastic deformation including descriptions
of the shear modulus and yield stress that incorporate dependence on pressure,
temperature and plastic strain. However, they restricted the model to high strain rate
(>10%s") deformation by assuming a rate independent model. Steinberg et al. (1988)
developed an addition to the Steinberg-Guinan model to extend its validity to plastic.
strain rates as low as 10™s™. |

Godwal et al. (1983) presented a review of pressure-volume relation of condensed
matter at up to 10 TPa. They described many pressure-volume relations for a wide range
of densities and temperatures, obtained by empirical and quantum mechanical
calculations, where a variety of physical phenomena such as lattice and electronic
thermal excitation, phase transition, etc. are encountered.

Johnson er al. (1983) developed an empirical yield model for metals under high
strain, high strain rate and high temperature. They also presented a database of material
parameters fitted to their model based on torsion, Hopkinson bar and quasi-static tensile

experiments. This model, known as the Johnson-Cook model, is widely used in high-
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shock computer codes. Rule et al. (1998) presented a modification to the Johnson-Cook
model to account for the sudden jump in magnitude of the strain rate effect that many
metals exhibit at rates greater than 10*™. Follansbee et al. (1988) concluded that the
increased strain rate sensitivity -was due to a dramatic increase in dislocation
accumulation at strain rates exceeding ~10°s™, and proposed a model that used the
dislocation density as the only state variable to describe the plastic behavior of f.c.c.
(Face center cubic) metals.

Doraivelu er al. (1984) proposed a yield function model for porous materials. In
their model the yield function was explicitly coupled to the first and second invariants of
the stress tensor.

Asay et al. (1987) presented a very brief discussion of the basic theorétical
concepts that form the basis for the development of material models. They also discusse.d
some experimental techniques used in the characterization of the shock response of
materials and a basic discussion of the pressure-volume response of materials in the solid,
liquid and gaseous states. Finaliy they gave a very basic discussion of the viscoplastic
behavior of materials and some fracture considerations.

Zerilli et al. (1987) presented a viscoplastic constitutive model that is based on
dislocation mechanics.  Their model applies to fcc polycrystalline metals and
incorporates the effects of thermally activated mechanisms of dislocation movemen‘t and
the influence of solute and grain size. They also presented material parameters for OFHC
Copper and Armco Iron based on the data presented by Johnson er al. (1 983).

Wang et al. (1997) presented a study of the applicability of three viscoplastic
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models to the modeling of instabilities due to strain and strain rate softening. They

considered the Perzyna, Duvaut-Lions models and a new model proposed by them. They
also presented a finite difference formulation of the models for inclusion in an implicit or
explicit finite element code.

Fossum (1998) presented an optimization technique to fit experimental data to a
viscoplastic constitutive model. The proposed method considered the rate form of the
constitutive model to be fitted to time-differentiated stress-strain data. He concluded that
there is a definite advantage in using the time-differentiated stress-strain data to fit the
model since this form of data tends to reduce the correlation between the parameters that
define the model.

Zhou et al. (1998) proposed a model to account for the softening effect on the
yield stress produced by dynamic recovery and heat generation. Their viscoplastic model
consisted of a hyperbolic-sine strain hardening law with saturation and a softening term
that accounted for the thermally activated effects of dislocation motion. The model was

validated with torsional tests under a range of temperatures

1.1.2  Fracture Models
The papers discussed in this section deal with the modeling of dynamic fracture.

Most of the articles deal with ductile fracture in the form of void nucleation and growth,

* but there are some review papers that deal with the dynamic fracture problem in general,

including brittle fracture. The first research papers that are discussed do not deal with

fracture but with the deformation of porous solids. The reason for presenting a




e o -

e s

Y — o —— . —— _—— ————— 5

Fp— - -

- — g Soo—— s oo

discussion of these papers in this section is that they form the basis for the latter

development of void growth models in fracture micro-mechanics.

Mackenzie (1949) presented a model to calculate the effective bulk and shear
modulus of a solid containing spherical holes, i.e. material micro-damage. The effective
elastic moduli were calculated by applying a stress to the outer spherical boundary of a
sphere with a spherical void and comparing the strains produced in the actual solid with
the strains produced by the same stress in a homogeneous isotropic voidless solid.

McClintock (1968) presented a simple fracture criterion for metals driven by the
growth of existing holes in the material. His model was based on the growth of
cylindrical holes of elliptical cross section with axes parallel to the principal directions of
the applied stress.

Herrmann (1969) proposed a constitutive model to describe the compaction of a
porous solid under shock loading. The theory behind the model was phenomenological
and the functions that define the model had to be fitted to empirical data. He made a
series of simplifications, including the assumption that there is no plastic shear
deformation and that the compaction process is insensitive to changes in temper.ature
deviations from the Hugoniot. The model compared well with experimental data
obtained from plate impact experiments.

Carroll ez al. (1972) derived pore collapse relations by analysis of a hollow sphere
under an external pressure, with a pressure-volume relation of the porous material similar

to the one proposed by Herrmann (1969). They did a study of the initial elastic-void-

volume change, the transition to an elastic-plastic phase and the final plastic phase. They
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concluded that the first two phases do not have a big effect on the compressibility of the
porous material. The plasticity model was simplified to an elastic-perfectly-plastic
material without rate effects, and thermal effects were neglected.

Butcher et al. (1974) presented some improvements to the original model
proposed by Carrol et al. (1972). The improvements included the addition of work
hardening and rate dependence through a viscosity term. The predictions of this
improved model were compared with experimental data on 2024 Aluminum with good
agreement.

Shima et al. (1976) proposed a yield criterion for porous materials that coupled
the onset of yield of the matrix material due to deviatoric stresses and the onset of yield
on the pore wall.

Seaman er al. (1976) developed models of ductile and brittle fracture. The
models included the nucleation and growth of voids or cracks and the coalescence of
cracks. The nucleation and growth models were phenomenological and included a
ttueshold stress and material viscosity in the growth model. They also proposed a
modification to the pressure-volume relation based in the MacKenzie ((1 949) model for
the bulk modulus, and a dependence of the yield stress on the current void volume and
density.

Gurson (1977) proposed a yield function for porous materials and a 'void
nucleation model. The yield function was used as a plastic potential to define a flow rule
that is independent of rate and thermal effects, but considers the void volume fraction in

the damage material. The nucleation model is based on the statistical distribution of solid




o " g o gt

B e

| o ey g

P

et G, oy | s o

particles in the matrix. Thus, a void is nucleated when a critical mean stress is reached

and the particle surface is debonded from the matrix material. In his model he considered
spherical and cylindrical geometries to describe the shape of the voids.

Norris et al. (1978) proposed a phenomenological model that describes the onset
of fracture as a function of plastic-strain and mean-stress. Fracture occurs when a critical
value of a cumulative-damage parameter is reached over a length that is characteristic of
the material. They tested their model usi>ng simulations of tests that included simple
tension, circumferentially notched tension, Charpy V-notched, and pre-cracked compact
tension.

Wilkins er al. (1980) also proposed a cumulative-strain-damage model for ductile
fracture. The damage parameter was defined to be a function of the equivalent plastic
strain, the mean stress and the stress deviator. In this model fracture begins when the
cumulative damage parameter exceeds a critical damage value over a critical distance.
The model was calibrated and tested with simple tensile, cylinder impact, torsional and
notched bar tensile tests.

Johnson (1981) presented the complete derivation of the void collapse model
presented by Carroll er al. (1972) with significant additions. The first improvement
proposed by Johnson was the generalization of the model to include not only void
collapse but also void distension. He expanded on the work by MacKenzie (1949) to
describe the elastic moduli dependence on void volume fraction by modifying it to make
the shear modulus go to zero as the void volume fraction approached unity. In addition,

he included rate effects in the yield function through a viscosity term, but left out thermal
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softening and strain hardening effects. Even though he did not include thermal softening

effects, he inferred that they were important since he had to reduce the viscosity of the
material to 10P from room temperature values of approximately ~10°P to obtain results
comparable to experiments. The inertial e“gct of the pore wall motion was neglected.
He also addressed the problem of fragmehtati?m of an expanding ring through the
inclusion of a heterogeneous initial-void-volume-fraction distribution across the ring.
Tvergaard et al. (1982, 1984, 1986 and 1987) and Becker ez al. (1988) presented a
constitutive model to describe ductile fracture in polycrystalline metals by nucleation,
growth and coalescence of voids. They considered a material with voids of different
orders of magnitude in which the material has an initial array of large cylindrical voids
and the material between these voids is modeled through a constitutive model for porous
materials. Thus; fracture occurs when the large voids are linked by micro-cracks, which
are a result of small-scale nucleation, growth and coalescence of micro-voids. Tvergaard
(1982) proposed a yield condition for a porous solid that was based on the work of
Gurson (1977), with modifications to improve the modeling of shear band localization.
Tvergaard and Needleman (1984) also proposed a modification to the yield condition to
account for failure through the introduction of a critical and ultimate void-volume-
fraction. They also proposed phenomenological nucleation and growth models that are
strain and stress driven. Tvergaard (1996) used his model to study the effect of void size
distribution in the matrix material on the fracture process. He concluded that for large
void volume fraction the small voids grow at a higher rate and conversely, for small void

volume fraction the large voids grow at a higher rate.
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Hancock et al. (1985) discussed the results of a finite element solution for a
spherical elastic inclusion in a plastically deforming matrix. These results were used in
conjunction with some experimental work using notched tensile specimens to generate
multiaxial states of stress from which the local conditions leadin3 to decohesion (;/oid
nucleation) of the inclusi<on/matrix interface were determined. One important feature of
this study was the conclusion that there is a statistical distribution of interfacial strength.
Some of the voids had a growth-threshold mean-stress approximately seven times the
vield stress and some weakly bonded particles behave as pre-existing voids.

Carroll (1985) and Kim and Carroll (1987) presented an extension to his work of
(Carroll 1972) to include a study of different strain hardening laws that allowed for a
closed-form solution to the variable mean stress threshold for void volume frac.tion
growth. The strain hardening laws included an elastic response, two saturation hardening
laws, a pseudo-exponential hardening and a power-exponential hardening law. He also
included some discussion on the behavior of these response laws in terms of the shape of
the threshold mean stress as a function of void volume fraction. {r addition, Carroll et al.
(1986) presented a study of the effect of temperature on the viscoplastic response of a
single void under compressive mean stress, concluding that the viscoplastic response 1s
better modeled when the temperature effect is included. This was done by introducing a
temperature ‘dependent yield stress and viscosity model, and an energy rate balance
equation.

Perzyna (1986) presented a model for dynamic fracture that was based in part on

the work of Carroll (1972, 1985) and Johnson (1981). Perzyna simplified the void
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growth model by also excluding the inertial effects, which transformed the second order
nonlinear differential equation for void growth to a first order differential equation. He
also proposed a viscoplastic model withvlinear work hardening for the void growth model
but left out all temperature effects. The most important contribution by Perzyna was the
formulation of an elastic-viscoplastic model of the voided solid that inherently described
the dilatational effects and fracture generated by the nucleation, growth and coalescence
of microvoids. His formulation was simpler than the one proposed by Tvergaard and
Needleman (1984).

Curran er al. (1987) presented a thorough review of proposed models that
describe the dynamic failure mechanisms in polycrystalline solids from micro and
macroscopic points of view. In addition, they also presented a brief discussion of the
experimental techniques used to characterize the dynamic fracture process. They
presented a discussion of the models for void and crack nucleation, a discussion of the
different models used to describe the growth of microvoids or shear bands and their
interaction leading to the coalescence of microvoids or cracks.

Grady (1988) discussed the spall strength of solids in terms of its fracture energy.
His study had the objective of identifying which properties of the material influence the
damage process in both, brittle and ductile failure. He defined the spall strength for
brittle fracture to be controlled by the fracture toughness, and for ductile fracture by the
yield stress. Due to the simplifications and assumptions in the modeling, he reached

conclusions that have been proven to be inaccurate, such as the conclusion that ductile

spall strength is rate independent.




-

13

Rajendran et al. (1989) presented a dynamic failure model basec‘i on
phenomenological observations. They modeled the plastic response of the matrix
material with the Bodner and Partom model, which does not consider a yield condition,
and the agzregate with voids with a2 model simil& in form to Gurson’s (1977) yield
model. They tested their model with plate impact experiments of OFHC Copper at
relatively low velocities (<200m/s).

In a series of papers from 1989 to 1996 Eftis and Nemes generalized Perzyna’s
viscoplastic-damage constitutive model and calculation of the microvoid growth rate, by
incorporating nonlinear strain hardening that saturates for the viscoplastic material
behavior. This elastic-viscoplastic microdamage constitutive model, appropriate for
isothermal ductile fracture of polycrystalline materials, was used to successfully describe
the main features of plate impact-induced spall fracture for: (i) Rectangular plates, (ii)
oblique impact of rectangular plates, (iii) circular plates with the flyer having smaller
diameter then the target, and (iv) very high strain rate fracture of unnotched round tensile
bars. Thé :onstitutive-microdamage equations have also been employed to analytically
demonstrate the known experimental fact that elasto-viscoplastic waves can be
propagateci through damaged softened (i.e. unstable) polycrystalline materials.

Cortes (1992) presented a pore growth model that was based on the model
proposed by Carroll (1972, 1985) and Johnson (1981) with the inclusion of linear
* hardening and viscous and thermal effects but with a simplified definition of strain. He

also proposed a modification to the original model to include the effects of deviatoric

stresses on the growth of microvoids. He concluded that the thermal effect on the void
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volume fraction evolution was negligible, which contradicts the findings of Johnson
(1981) and Carroll and Kim (1986). Cortes er al. (1995) modified his model to include
void nucleation and modified the growth threshold-mean-stress using Gurson’s (1977)
yield model. He used his new model to simulate spall fracture in plate impacts and
explosive loading of plates with good agreement between experiment and simulation
results in terms of the velocity profile of the target rear surface.

Benson (1993) presented a study of the effect of void distribution on the dynamic
growth and coalescence of voids. Computer simulations were made of different patterns
of cylindrical voids in OFHC Copper and 4340 Steel. The Johnson-Cook model was
used to describe the viscoplastic behavior of the material and a simple limit-strain
fracture model was implemented. The most important conclusion from his work was that
the fracture path for the two materials was different. While for OFHC Copper fracture '
was reached when the voids grew until they connected, 4340 fractured by failure of the
material between the voids. Benson concluded that the difference in fracture paths was
due to the large difference in the strain-threshold for fracture.

Tong et al. (1993) presented a study of the inertial, thermal and viscous effects on
the void collapse obtained through a model similar to the Carroll and Johnson models and
presented comparative results with Carroll’s model. In 1995 Tong did a similar study of
the inertial effects on the void collapse predicted by the Gurson yield model. In all cases,
he concluded that inertial and dynamic effects in general have a significant effect on the
pore collapse predictions.

Addessio et al. (1993), Lee et al. (1994, 1996) presented studies of some of the
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models already mentioned in this review for specific applications (i.e. compaction of
cylinders, formability, etc) and proposed small improvements with suggésted
shortcomings and strengths of the models. |

Kanel et al. (1996) presented the results of a series of experiments done on
Aluminum AD1 and Magnesium Mg95 plates to investigate the effect of temperature on
the spall strength of these materials. The conclusion was that a higher initial temperature
of the specimens caused the spall strength to decrease, which again, contradicts the
conslusion of Cortes and supports the conclusions by Carroll and Kim (1986) and

Johnson (1981).

1.1.3 Computer Codes

The literature review in terms of the numerical algorithms and computer codes
was not as extensive as in the areas of constitutive models and fracture, and in the
following section on materials characterization of after shock specimens. The objective
of the review on computer codes is directed towards providing an overview of the
numerical algorithms used in the commercial and public domain codes used to simulate
hypervelocity impacts, and not to give a detailed exposition of the evolution of every
component and algorithm that compose current computer codes. The reason for this is
that the research work emphasized the development of an elastic-viscoplastié micro-
damage constitutive model appropriate for hypervelocity impact and its implementation

as separate subroutines in an existing computer code.

Current computer codes and their algorithms are based on the work by Wilkins et
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al. (1974) where they described the details for the development of a three-dimensional
finite element/finite difference computer program to solve high-shock and high non-
linear deformation problems in a Lagrangian grid.

Liu et al. 11986) and Benson (1989) presented the conservation law;, the
constitutive relations, and the pressure-volume relations for the modeling of path-
dependent materials in an arbitrary Lagrangian-Eulerian finite element method.

Johnson et al. (1987) introduced an eroding algorithm to be incorporated in a
Lagrangian finite element code to simulate projectile penetration/perforation of thick
plates. The objective of this eroding algorithm is to eliminate computational cells when
they reach a limit strain.

McGlaun er al. (1990) gave a brief description of the models and fegtures
available in the CTH Eularian code. Trucano ef al. (1990) showed the results of CTH‘
simulations of hypervelocity impacts. They reported on the effect of grid density,
advection and interface tracking algorithms and other factors on the simulation errors.

Anderson (1287) provides an extensive review of the evolution of “Hydrocodes”.
He discusses Lagrangian and Eularian formulations, including advantages and
disadvantages, the concept of artificial viscosity to deal with discontinuities of shocks,
and finally the treatment of constitutive models, pressure-volume relations, eroding

algorithms and fracture.

1.1.4 Microstructural Studies

This section of the review will briefly discuss microstructural studies as they
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relate to hypervelocity impact specimens. The papers discussed in this section
concentrate on the effects of pre-impact microstructure and the microstructural features
observed in after-impact specimens.

Meyers et al. (1981) presented a short review of the mechanisms that lead to
defect generation under shock deformauon. They discussed the formation of point, line
and planar defects, and phase transformations.

Gray III (1993) gives a review of the effects of shock deformation on maierial
response. He discusses the techniques and design parameters used in shock recovery
experiments, and the influence of shock parameters, including peak pressure, pulse
duration and loading rate on post-shock structure or properties of the material.

Ferreyra et al. (1995) provided a study of the effects of target microstructure on
crater depth, diameter and depth to diameter ratios in a Copper plate impacted by a
spherical projectile at high velocity. They conclude that there is a profound effect of
target microstructure on cratering characteristics.

Rivas er al (1995) gave a brief discussion of the different after-shock
microstructural characteristics observed in OFHC Copper, 1100 and 6061-T6 Aluminum
targets. |

Murr ar al. (1996) discussed the deformation processes and microstructures

associated with different high deformation configurations. They discussed the

" microstructural features and deformation mechanisms associated with plate impact

experiments, shaped charges, explosively formed penetrators, spherical projectile

hypervelocity impacts and long rod penetration of thick targets.
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Quifiones (1996) provided a very thorough study of the microstuctural features
observed in post impact OFHC Copper plates. The study included the discussion of
microstructural-features and hardness profiles across the thickness of the targc;t plate after
impact at different velocities. She also simulated the impa~is on a computer code and
correlated the hardness profile with residual yield stress as defined by the Johnson-Cook
yield model. Quifiones er al. (1998) extended the simulation study to include the
simulation of spall fracture using a limit stress fracture model.

Murr et al. (1997) and Ferreyra et al. (1997) provided a study of microstructure
after high velocity and hypervelocity impact cratering of Copper targets. They con.clude
that the target microstructure has a strong effect on the geometrical characteristics of the
craters, especially the dislocation structure while grain size seems to have an insignificant

effect.

1.2 Objective

The research presented in this dissertation seeks to - expand the capability of
current constitutive models for the simulation of hypervelocity impact problems. This is
accomplished through the development of a more general constitutive-microdamage
model that can describe high shock compression, dilatation, shear and material
microdamage evolution leading to fracture, assuming thermoelastic-thermoviécoplastic
material behavior. The microdamage model presented here incorporates a non-linear

pressure volume relation for shock compression and dilatation, along with expressions for

the elastic moduli that include volume strain dependence as well as thermal and
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microdamage softening. The viscoplastic response equations incorporate nonlinear strain

and strain rate hardening as well as thermal and microdamage softening with temperature

dependent viscosity, and include plastic compressibility due to microvoid volume
fraction change. The melt temperature is assumed to be volume strain dependant. The
microdamage evolution model includes microvoid void nucleation with a variable mean
stress threshold and microvoid growth with void interaction effects. The microvoid
growth model incorporates a viscoplastic material model with nonlinear strain and strain
rate hardening as well as thermal softening, and a temperature dependant viscosity.

The work presented in this dissertation improves upon previous works, related to
hypervelocity impact modeling and simulation, in several key issues.

1) The constitutive model presented here is the most extensive in the sense that it
incorporates more of the known polycrystalline material behavior issues, which ‘
were described in this section.

2) In the constitutive model presented here, the softening effect of microdamage is
incorporated into the Johnson-Cook model for the yield function, as weil a_s‘ i; the
equations for the elastic moduli.

3) In the microvoid nucleation rate equation, the threshold mean-stress is not
assumed constant but is expressed as a function of equivalent plastic strain and
strain rate.

4) A temperature rate equation local to the wall of a growing microvoid is

formulated. The temperature calculated with this equation is substituted in the

expressions for the temperature dependent material viscosity and threshold mean-
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stress for microvoid growth. This provides analytical justification for the reduced
temperature-independent viscosity used by Johnson (1981) and Eftis et al. (1991),
and repfesents an important improvement over previous models.

In the expression for the viscoplastic rate. of deformation tensor, the volumetric
component (due to microvoid volume change) is not explicitly coupled to the
deviatoric component. This corrects the problems associated with the Perzyna’s
model (Perzyna, 1986) that give a non-zero value to the volumetric contribution
from microvoid growth even when the microvoid volume rate of change is zero.
Most of the constitutive models for the simulation of hypervelocity impact
problems presented in the literature are tested with only one computer simulation,
while the simulations reported in this dissertation (see Chapter 6) cover a wide
range of plate target thickness that result in widely varied levels of damage.
These simulations provide a measure of the capability and performance of the
microdamage constitutive model in the simulation of hypervelocity impact

problems under varied geometrical configurations.




CHAPTER 2

RANKINE-HUGONIOT RELATIONS

Extensive experimental characterizations of the pressure-volume (P-V) relations
for various materials for a wide range of shock pressures have been developed since the
1950’s (Walsh et al. 1957). Most of the data compiled has been produced through
contact explosive detonation, or the “flyer plate” experiment where a projectile plate 1s
explosively accelerated towards a target plate in a configuration that produces planar
shock waves across the projectile and target plates. The data is usually presented as P-V
curves or curves that relate the shock wave speed Us to the particle velocity Up behind
the shock front. It has been discovered experimentally that for polycrystalline mietals
under a wide range of shock pressures the Us-Up curve can be expressed as a linear |
equation,

Ug =¢c, +sU, 2.1
where ¢y is the sound speed in the material at atmiospheric pressure and room temperature
(~300°K) , s is the slope of the Us-Up linear relation and Up is the particle speed behind
the shock front. It is important to note that the experimental setup produces planar shock
waves where the deviatoric stresses are non-zero and thus some plastic deformation and
“residual” temperature is to be expected if the dynamic yield stress is exceeded. Figure
2.1 shows experimental data points for Copper in the Us-Up plane with a linear fit

through the points.
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) Figure 2.1 High-pressure Hugoniot data for Copper obtained by several .
investigators. The numerals along the curve indicate pressures in GPa. The line on the
small inset represents the entire range of the larger figure, while the three points represent
the results of Soviet ultrahigh pressure experiments (Davison et al. 1979).

! The development of a P-V equation for shock loading requires the
‘ implementation of the “jump conditions” across the shock wave coupled with the Us-Up
{ linear relation. The “jump conditions” are determined by the conservation of mass, linear
! momentum and energy that relate the density, particle velocity and stresses across the
l

!

I

I

|
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discontinuity produced by the moving shock wave, and can be stated at first in general

terms by the well known jump relations (Figure 2.2),
p* (un -V, ) =p° (un - v;) , conservation of mass (2.2)

p'v’(un —v;)+T"n i '
, conservation of momentum (2.3)

, v v+ T
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p*(av+ V' +E“)(un - v:)+t -vi—q-n
| , conservation of energy (2.4)

= p*(—iv' VT + E'J(un - v;)+t' V' —q-n
where p is the density, u, is the speed of the shock wave along a unit vector normal to the
shock front (n), v, is the particle speed along vector n, v is the particle velocity vector, T
is the Cauchy stress tensor, t is equal to T-n, which is the traction vector across the wave
front, E is the internal energy per unit mass and q is the heat flux. In these equations, the
functions (¢") and (¢") indicate the limits of the function ¢ as the shock wave is

approached from the front (material into which the wave is advancing) and from the

back, respectively.

Figure 2.2 Depiction of the state of the material ahead and behind the Shock-Front.

If we make the shock front a planar surface moving in the x; direction of a
rectangular Cartesian coordinate system so that |n|=n, =1, g=0 (adiabatic conditions),

and denote u,=u, then Equations (2.2) - (2.4) can be expressed as,




p*(u —vf): p'(u —v,')
pvilu=vi )+ T =pvilu-vi )+ Ty
T, =T,

Tl; =T,

p*(-;—(v:)z %E*)(u~v.*)+T.: vi = p'(%(v;)’ +E')(u-v;)+ v
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(2.5)
(2.62)
(2.6b)

(2.6¢)

2.7)

Equations (2.6b) and (2.6c) state that the shear stress fields T, and T;3 are continuous

across the planar shock wave. If we now let v'=0 and make u=Us, v; = U,, p"=p’,

p=p, making use of Equations (2.1) and (2.5) — (2.7) we can simplify the jump equations,

and obtain the Rankine-Hugoniot equations
poUs = p(Us - UP)
T =Ty = pU,pUs

E —-E* = (T;I+Tl_l)(l-%0)

1
2 p

Combining Equations (2.1), (2.11) and (2.12) yields,

2
. _ C
Tn -T, =ﬁ#

where, y=1- Po , 1s the volume strain.

(2.8)

2.9)

(2.10)

@.11)

(2.12)

Equation (2.11) represents the change in stress T|; from an initial state to a

shocked state. This equation can be modified and generalized to a shock wave front with
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arbitrary orientation. Then the uniaxial stress can be replaced by the negative of the

mean stress (denoted as a ‘pressure’) P = —%trT so that Equation (2.11) can be stated as, -

P,-P, = PY__p (2.13)

[-syf
where Py is the Hugoniot pressure above a zero pressure reference, Py is the pressure
acting on the material ahead of the shock front above the zero pressure reference and
P is the Hugoniot pressure above Po. When the volume strain y is positive signifying
volume reduction, the ‘pressure’ P is positive, and conversely when the volume strain is
negative signifying dilatation, P is negative.

Equation (2.13) is generally called the Hugoniot pressure and represents the locus
of all the shocked states as depicted in Figure 2.3. When a material is shocked, the
pressure does not follow the Hugoniot (P-y) pressure, but increases discontinually from
its initial state Py to P, following the Rayleigh line (Davison er al. 1979 and Boslouéh et

al. 1993). Similarly, from Equation (2.10) the change in ixnternal energy due to the shock

compression can be shown to be,

(p""Po)W =E,

' 1
EH—E0=5 p o
0

(2.14)

where Ey is the Hugonion energy above a zero energy reference, Ej is the energy of the
material ahead of the shock front above the zero energy reference and Ey, is the

hugoniot energy above Eq. It should be noted that Equation (2.14) gives the area between

the Rayleigh line and the zero reference pressure (Figure 2.3).
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Figure 2.3 Shock Hugoniot pressure curve and Rayleigh line for a given pressure P,.

Equation (2.13) and (2.14) represent the pressure and energy increments associated with a

change in volume strain (y), but do not include thermal contributions from plastic work

associated with the deviatoric stresses.
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CHAPTER 3

GRUNEISEN EQUATION OF STATE

The thermal pressure within a material is associated with its thermal energy,
which can be calculated approximately by assuming the ion cores of a crystal lattice as
N-many simple harmonic oscillators (the oscillations of the free electron gas are not
considered). The oscillators are vibrating in the normal modes of the three-dimensional
system at frequencies vi('o) that are assumed to depend only upon the specific volume
(Walsh et all. 1957). From quantum mechanical calculations of the energy of a system of
3N oscillators coupled with a statistical mechanics representation of the thermal energy

of the lattice, for any temperature T>0°K the total energy can be shown to be given by

1 3N 3N hV
E(U,T)=(Do(u)+52hvi +y (3.1
i i e

'kT_l

3N
where, ®(v) is the binding energy of the lattice at 0°K, —;—Zhv, is the ground state

3N
energy of the 0°K oscillations at the lowest energy state and E —_— Vi s the thermal

i e N%T _1
energy of the oscillating lattice, with the summation being over the 3N normal modes of
the crystal. The constants 4 and x are the Planck and Boltzman constants respectivély.
The Helmholtz free energy can be expressed as
H=E-TS. (3.2)

S is the thermodynamic entropy defined from statistical mechanics as
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where

E(n) =, +BZN:(n+%)hvi. (3.4)

and n is the occupation number of the phonon energy levels oscillating at the i

frequencies. Substituting Equation (3.3) in (3.2) leads to,

H=-xTIn) e*T (3.5)

n=0

Then, substituting Equation (3.4) in (3.5) leads to the following expression for the

Helmholtz free energy
1 3N 3N _,,v/
H:(DO+EZhvi+KTZln[l—e RT} (3.6)

The external pressure is defined as the specific volume derivative of the free energy at

constant temperature taken as negative for volume compression, giving the result

do 1 3y, (v) Noy.(v) A,
p=t Lo | (2SN, (S 3.7
(dv] +2Z v h Z v emikT_l G7)
where 120) __1fdlnv} __1fdv,) (3.8)
v v{dlnv ). v;{dv ),

Equation (3.8) represents what is known as the Gruneisen ratio at the i" frequency and is
a function of the specific volume (v) A general assumption that is used to simplify
Equation (3.7) is to take all the frequencies (v;) for the 3N harmonic oscillators as being

equal. This leads to the following simplification for the Gruneisen parameter

LR

TR
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1, (0) =7, (v). .(3.9)

Substituting Equation (3.9) in (3.7) leads to the following simplified definition of the

pressure,
do 1 y(o) & Yo)& v,
P = 0 +— h 4+ ! . 3 . 1 O
(dul 21)Zi:v' U,Z"%T (3-10)
e -1
If we now define
1 3N
E(0)yex = D,(0)+ Ezh"i , as the cold energy (3.11)
and
3N hv.
E, (U,T) = zm—' , as the thermal energy, (3.12)
i e kT _1
then
P(0)yy = —(%’ij +Y—(D—)Eo(u) , represents the cold pressure. (3.13)
V). v

By combining Equations (3.10), (3.12) and (3.1) the pressure at specific volume (v) and

temperature (T) can be expressed as
Po.T) = Plo) + IE, (07). 614
v

This definition of the pressure can be traced, in Figure 3.1, by following the 0°K isotherm
up to specific volume (v) or volume-strain (y) at pressure P(y,0°K) and then adding, at
constant volume, the thermal contribution up to P(y,T).

From Equations (3.1), (3.11) and (3.12) we can define the thermal energy as follows:

E, (v, T)=E(v, T)=E(v)yg (3.15)
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Substituting Equation (3.15) in (3.14) we reach the following result,
P(v,T)=P(v)yox + 1("—)(E(U,T)— E(v) o ) (3.16a)
v
P(0,T)=P(0)s =@(E(U,T)—E(U)Oo,.). (3.165)

Equation (3.16a) is known as the general Mie-Gruneisen Equation of state (EOS).
Equation (3.16b) represents the change in pressure above the 0°K isotherm (P-V-E)
curve. This form of the Mie-Gruneisen EOS makes it easy to visualize the fact that iF can
be rewritten in terms of any other (P-V-E) curve. Rewriting Equation (3.16a) in terms of

the Hugoniot curve taken as reference,

P(v,T)=P, +1—($)—)(E(D,T)—EH). (3.17)

This definition of the pressure can be traced, in Figure 3.1, by following the Hugoniot
curve from the Py point up to Py and then adding the partial thermal contribution by the
difference between the total energy E(y,T) and the Hugoniot energy Ey.

Then, substituting Equations (2.13) and (2.14) ir. Equation (3.17) and fearranging terms,

P(y,T)-P, =Py, +7(¥)p(Ey, )+ 7(w)p(E(v, T)-E,) - (3.182)

P(y,T)-P, '= %(1 - % Y(w)(‘%_ w)) +y(w)p(E(w,T)-E,). (3.18b)

Equation (3.18a) represents the change in pressure above the reference point (Po,Eo)

which has to be the room conditions of 300°K temperature and atmospheric pressure,

since these are the conditions under which the Us-Up curves (Eq 2.1) that form the basis

for the Hugoniot curve, are experimentally obtained. Thus the Mie-Gruneisen (P-V-E)
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equation can be simplified as follows with the understanding that the pressures and

energies represent changes with respect to the reference point previously mentioned, _

P(y,T)= [f i";‘j’z (1 -4 Y(w)(‘%_ W)) + v(:y)p E(v.T),  y>0 (3.19)

where E(y,T) is the internal energy per unit mass that can be calculated by the energy
rate balance equation appearing in Section 4.5.

Figure 3.1 presents a qualitative illustration of all the different terms that lead to

the formulation of the Mie-Gruneisen (P-\y) curve.

P 4 r E
Ply,T)
Py T) f--mmmmmmmmmmmmcmem e ccmc e e\ Yy c e +--4 E
(1) Hugoniot i v
T A Wi {AR W =
i’iOO°K
sotherm
L CTT1 110 G Y AU Lo o] E(y,300°K)
IN/
E°YLI)P /o
__________ J,-___-_-----__ 4./ ] E(y,0°K)
7S :
i) ;/ E Er\, i
0°K Isotherm / ' Er(y, 1)
/ : .
Polyo,300°K) ===~ g b= Eslyn300°K)
' Ve :
' _/./ i Eo
: /'/ |
Plyo,0°K) | ---- A e rm=deaad o] Elyo,0°1)
e weT) Vv

Figure 3.1 Mie-Gruneisen, Hugoniot, 0°K and 300°K Isothermal Pressure-
Volume Strain Curves.
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The volume strain dependence of the Gruneisen coefficient y(y) of Equation

(3.19) can be expressed as a polynomial with empirically determined coefficients (Walsh

et al. 1957). Then, to a first order approximation y(y) is expressed as

v(y) =7y, + A(l—f’;] | (3.20)

where, for example the coefficients yo and A have the values (2.04, -3.296), respectively
for Copper and (2.13, -7.245) for Aluminum-24ST.
Insertion of (3.20) into (3.19) gives the nonlinear pressure-volume strain relation

(equation of state) associated with shock compression of polycrystalline materials.

P(W,T)=[—IP3_%(1—)§{Y{I—Y\~V)+ %}2}}+{70+A(1—f’$ﬂplz(w,r), v>0  (3.21)

It will be recalled that in the development of Equation (2.19) the ‘pressure’ term P

. 1 .
actually represents the negative of the mean stress P=—~—trT=-c_, as designated

m?

above, E is the internal energy per unit mass, p, po are tne mass densities in the current

and reference states, (co) is the sound speed and (s) is the experimentally determined

~ slope in the shock wave speed-particle speed relation (2.1)




© L et B i arriotn® Gamsnna

;
i
i
i
i
‘
t

CHAPTER 4

CONSTITUTIVE - MICRODAMAGE MODEL

4.1 Introduction

The governing balance Equations of continuurn mechanics, expressed in local
form, state that for any deforming material body the balance of mass, linear momentum,
moment of momentum and energy, respectively, requires that the following Equations be

satisfied at each point of the body

?__)t—p+gradp-1)+pdivn=0 4.1
divT +pb = p> (42)
dt
T=T" (4.3)
de .
pa = tr(T- D)+ ph —divq 4.4)

where p is the mass density, vis the velocity vector, T the Cauchy stress tensor where the
superscript denotes transpose, b is the body force per unit mass, D is the rate of
deformation tensor, h is the heat source per unit mass and q is the heat conduction vector.
In the work that follows the material behavior involves polycrystalline solids that
deform elastically and viscoplastically. Therefore, it is convenient to decompose the rate
of deformation tensor additively into elastic and viscoplastic parts
D=D*+D° 4.5)

where
33
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D =% (gradv+(gradv)"). (4.6)

4.2 Elastic Rate of Deformation

The previously described conservation equations represent the mathematical

descriptions of stress, strain and rate of deformation and they apply to all continuous
media. On the other hand, the constitutive equations characterize the individual materials
and their specific reactions to applied loads. Due to the complexity of the maferial
response of different materials it is not feasible to have a single constitutive relation that
can be applied to all materials under all loading conditions. For this reason, the
constitutive model developed as part of the current dissertation work is tailored to high
shock compression, high strain, high strain rate and high temperature deformation
problems.

In a general sense, a constitutive model is defined as the function or functions that
relate the stress to the strain or strain rates. For the simulation of hypervelocity impgcts,
the most widely used form of the constitutive model is the one that relates stress to the
rate of deformation. In addition, for the model presented in this dissertation, the
constitutive model will be combined with thermoelastic, thermo-visco-plastic equations
and a micro-damage model that will couple the elastic moduli and viscosity coefficients
to temperature and micro-damage levels.

The high compression caused by hypervelocity impact produces large elastic

volume strain. The elastic shear deformations however are small order because of
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limitations imposed by onset of plastic yield in polycrystalline materials. It is
advantageous therefore to decompose D° into volumetric and deviatoric components
1
D =—(tD° 1+ D", 4.7
D) @.7)

where the elastic rate of volume strain is related to the mean s!:re:ss and the bulk modulus,
K, while the elastic rate of small shear is determined by the stress deviator and the elastic
shear modulus, p. Since the shear strains must be small in the elastic range it follows
from generalized Hooke’s Law that

1V
Dle = 2_T' .(48)
u

v
where T’ is the deviator of the Cauchy stress T, and () represents the frame indifferent

Jaumann time rate, whereby for any tensor A is given by

v
A=%+A~gradv+A-W—W-A 4.9

where W is the rotation tensor

W= (grad v— (grad v)T ) ' (4.10)

|-

During high shock compression and release, the large elastic compressive volume
strain rate is related to the applied mean stress rate and the elastic bulk modulus K, such

that

v

D)= 19
Agmnﬁ-3K1 4.11)




where here and throughout what follows, om signifies the mean stress % (r'T). We note

that in keeping with the notation and language commonly employed in discussions of the

Rankine-Hugoniot equations introduced in Section 3, the mean stress there 1s referred to

as ‘pressure’ -P = %trT . From expressions (4.8) and (4.11)

<

\v)
D _lomy Iy (4.12)

3K pATY
The pressure associated with the large volume strains that accompany high shock

compression 1S determined by the Gruneisen Equation (3.21), here reproduced again as

Equ. (4.13)

F’(w,ﬂ=lf°_;y‘i’2[1—}é{7{£ﬂ+ 1—‘_”;} H{yw ﬁ’;ﬂpE(W,T),wo (4.13)

where it will be recalled that \y=1—% =1——% is the volume strain. The
0 0

compression wave induced by the hypervelocity impact is followed by a reflected tensile
wave from the target rear free suface, causing dilatation (negative volume strain).
During the shock compression stage the shock wave speed 1s greater that the bulk sound
speed (Figure 2.1) because of the large volume compression. During the dilatation
however. the crystal lattice structure is expanding, thereby reducing the tensile wave

speed (which is no longer a shock wave) 1o the bulk sound speed co. This is equivalent to

seningrs=0 in Equation (2.1). Therefore, during dilatation the pressure has the value

Py.T)= Ku{l - }G{YOLI—_\%} + A(ﬁj ﬂ {yo + A[l—_“’—“-}ﬂ pE(y.T), v<0 (414

reer;




The tensile volume strains cannot assume values as large as the volume strains in
compression (that can reach values as high as thirty to forty percent), becauée of
impending fracture. It may turn out that terms of third order (and possibly of second
order) in vy, in expression (4.14) a7 small enough to be negligible.

All polycrystalline maerials contain microvoids and microcracks. Since impact
at hypervelocity can produce large adiabatic temperature increases, the corresponding
dynamic fracture will be ductile, caused essentially by nucleation, growth and joining

together of microvoids. The measure of ductile material microdamage can therefore be

. . . . \Y . .
described by microvoid volume fraction & = %, where v is the void volume for a

material element having volume v. The microdamage is viewed as a scalar-valued
continuous point function of position and time, i.e., E(x,t) similar to the other field

variables. For polycrystalline metals the average initial microvoid volume fraction

ranges from £, =107 ~10" (Curran er al 1987). The large volume strains of
compression following impact will reduce them furiner to insignificant values. On the
other hand the dilatation driven by the tensile mean stress wave, when high enough,
induces microvoid nucleation and growth, i.e., material microdamage that is revealed in
optical micrographs (Curran ef al. 1987) and by the reduced values for the elastic moduli

(Eftis 1996).

In circumstances that involve hypervelocity impact, formulation of constitutive

relations for the elastic moduli requires consideration of high volume strain, large




38

temperature changes and microdamage softening. With this in mind, the elastic bulk and

shear moduli can be represented initially by the following form.
K(y.&T) =K, i (v)fx () fis(T) | (4.15)
my, & T) = £, ()£, €)f,(T) . (4.16)
Where K, =p,c,’ and wo are the elastic bulk and shear moduli in the reference state:
=0, T=Ty=300°K and £=&,, and where fy,... fi3, and f,... f3 are initially undetermined

functions of their respective arguments.

The bulk modulus is defined as (Malvern 1969),

Q

O.I'\'|

K= (4.17)

g)

1
p

.
In calculating this derivative the frequently used approximation py(y)=p,y,is
emploved (Herrmann 1969), which is equivalent to taking A=0 in Equations (3.20) and

(4.13). With this simplification, the derivative (4.17) yields:

r . .
pcco‘ (1 - W)[l +(S —Yo )‘U]} = Kofkl(\y), v>0 - (4.182)
L (i-sy)
PcCo (l - V) (1 - 'YoW) = Koka(W)s y<0 (4.18Db)

Highly different constitutive models for the shear modulus for highly compressed

solids have been proposed by Steinberg er al. (1980), and Rubin (1987). Alternatively,

~ considering the lack of expenimental data it is reasonable to assume that the shear

modulus changes with respect to volume strain in the same manner as the bulk modulus

(Johnson er al. 1991 and Lipkin et al. 1977), 1.e.,




£.0v)="1,(v), (4.19)
where
3(1-2v)
= < 4.20
Mo =50y e (3.20)

and v1is the Poisson ration.
The effect of microvoid damage in degrading the elastic moduli can be described
by the well known hollow sphere proposed Mackenzie (1957), and subsequently

modified by Johnson (1981), according to which

| Al=¢) t(1-¢)
fm(’)—L +3KOJ (4.21)
ol 6K +12m, 22
fw-(,)—[(l é)[l TR an (4.22)

When =0, Eqs. (4.21) and (4.22) reduce to unity, and for £=1, (i.e. v, = v) they
reduce to zero.

The temperature variation of the buik and shear moduli at temperatures above
room temperature are known to be linear, or near linear, respectively. with the shear

modulus reducing to zero at melt temperature (Steinberg et al. 1980, Huntington 1958

and Lakkad 1971). Thus

T
f, = {l-a, [_—r;—lﬂ (4.23)
T-T, ¥
r“ ” (4.24)
T.-T,
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where a, and B are material constants, To is the temperature at which the modulus Ko or
yo are measured and Trm, is the melt temperature of the material. The \'aria;ion of the melt
temperature with large volume reduction can be calculated according to the model
propused by Steinberg er al. (1980),
T, = Tpyexp 22 y) (51" Ly>0. (4.25)
where Tmo is the melt temperature at zero volume strain and a, is a material parameter.
The elastic moduli expressions (4.15) and (4.16) can now be given in explicit

form, where for volume compression, y >0

‘o Ko[(l"W)[l'*’(s"Yo)W]: [l-az [Tlﬂlj] [ 41,(1-8) ] (4.26)

(1-sy)’ 0 4p, +3K &
A I 6K°+12p0j 5
u-uciL (-so) Hl Tm-TojM(l'é)(l'—%ﬁsuo 4 } (4.27)

whereas for zero volume strain and dilatation, y < 0, the parameter s is set equal to zero
in Equations (4.26) and (4.27). For high shock compression the microdamage
contribution reduces essentially to unity, while for small dilatation the volume strain

makes no significant contribution.

43 Viscoplastic Rate of Deformation
The plastic rate of deformation tensor can be decomposed in terms of its

volumetric and deviatoric components,

D° = -(rD*)1+ D" (4.28)

Gy |-
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1 o . : .
where :(trD")l represents the dilatational rate of deformation tensor associated with
3 .

void volume change, 1 is the identity tensor, D'? is the deviatoric rate of plastic
deformation tFasor.

Tc define the volumetric plastic rate of deformation an increment of dilatational

microvoid volume strain defined by —dv, = (1/v, )dv leads to the logarithmic expression.

vy, =-In (ll;_%—) (4.29)

where ,y_ represents the volume strain associated with void volume fraction change and
v v . .
= / represents void volume fraction.

It can be shown by using the continuity Equation (4.1) and Equation (4.29) that,

<t D? Y U P : . 3
oo ) to-auun(*«%o}}‘ (430

The ronstitutive model that describes the deviatoric viscoplastic response of the

material at high strain raie is based on the work by Perzyna (1986).

1 . (-\d)" 17" ™
D®?=—0lF—==-{2-1} T, 431
n ()HF n(w ) (.) )

where the yield condition requires that

F-li_1s0. (4.32)

. . . , ] - . . . : .
The stress deviator invariant J;, = Etr(T -T'), n is the material viscosity and x is a yield

function based on the Johnson-Cook model (Johnson ef al. 1983), but with the addition of
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a damage softening term to reflect the deterioration of the yield stress as the void volume

fraction increases,

-

werdorcktiaf (IR (] e

&)|| \T-T, & ¢,
¢f is the equivalent plastic strain, £ the equivalent plastic strain rate, £,=1.0 s, T is the

melt temperature, £ the current void volume fraction, &y the initial void volume fraction,

=, the critical void volume fraction at which the material locally fractures, and C,, C,. C;.

n and P are material parameters. The term [C, +C2(s")nJ describes the nonlinear

isotropic strain hardening characteristics of  the material; term

T-T,

g .
_ defines the
T, -T,

~ P
[]sC,ln[?——Hincorporates strain rate effect; and term 1—(
i -\ &

thermal softening characteristics of the matenal. When T=T, the thermal softening effect

£-&

—]-i defines the
0 /]

- -
E _F
SF =0

reduces the equivalent yield stress to zero. The last term, {1 —[
damage softening effects associated with the presence of microvoids. When £=Z;, the
damage softening effect reduces the equivalent yield stress to zero.

Experimental data is limited and considerable discrepancy exists in the reported
values of material viscosity. Various shock experiments have shown that.matérial
viscosity can be influenced by temperature (Carroll er al. 1986), strain rate (Swegle er al.

1985) and mean stress. A model proposed by Carroll er al. (1986) assumed an

exponential form of the temperature variation of viscosity for high strain rates.
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Chhabildas er al. (1979) extracted material viscosity values for various materials under
high shock compression and elevated temperature from measurements of shock rise time.
The model used in the present work assumes that the lower bound value for the viscosity

at melt temperature remains constant at =107 Poise (Carroll et al. 1986),

Mo T-T, A
n=n,exp - ln(—)(—————)] y>0, T<T, (4.34a)
’ { nrn Tm (W).—TO ’
n=n,exp|-In n—o\‘—T——T—" y<0, T<T (4.34b)
o mJ Tmo _TO ' B ’ - '

where ng 1s the viscosity at the reference temperature (room temperature) and high strain

rate of deformation i.e. 10%-10% 5!, 1, is the viscosity at melt temperature (Figure 4.1).
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Figure 4.1 Viscosity as a function of temperature for Aluminum applicable to
high strain rates (11o=10* P, nn=10? P and Tm=923 °K) (Mineev et al. 1997).
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Combining Equations (4.28), (4.30) and (4.31), the plastic rate of deformation

tensor can be expressed as,

1 5, " ¢ o
Df = -1; T 1. 4.33
n(T){K(ap,i‘p,T,é) } +{3(l—§)ll+ln("§}|/-:)J} ( )

This equation differs from the one proposed by Perzyna (1986) in that the
volumetric and deviatoric components are not explicitly coupled. In the form proposed
by Perzyna the constitutive model gives a non-zero value to the volumetric contribution
from microvoid growth even when the microvoid volume rate of change is zero. This
problem is corrected by using the form presented in Equation (4.35). It should be noted
that Equation (4.35) applies only for temperatures below the melt temperature. The

equivalent plastic strain is defined as (Malvern 1969),

e = [ 233 | (i, Ve 11, [qu) —tr(D"-D")] (4.36)

At melt temperature T=T,, and/or at the critical void volume fraction EZ=Zf, 1t
follows from (4.33) tha: x—0 so that

DPE,",’- — ® (4.37)

represents the condition for local failure, i.e., the material loses its capacity to resist load.

1.4 Microdamage Evolution
At the microstructural level, all polycrystalline solids fracture by the nucleation,
growth, and coalescence of voids (pores) and cracks (Curran et al. 1987). Because of the

elevated temperatures associated with hypervelocity impact only the ductile failure mode
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associated with nucleation, growth and coalescence of voids (Johnson 1981) is
considered.

Some of the first models developed to predict porosity changes of a material
subjected to high shock compression were developed by Carroll er al (1972). Their
development included‘the idealization of a void as a spherical hole inside a matrix of
solid material. From this initial study, the model has been improved by several authors
(Johnson 1981, Carroll 1985 and 1986, Perzyna 1986, and Eftis 1991, 1992 and 1996
amongst others). The development of the micro-damage model presented in this
dissertation improves upon the previous models in several ways that will be discussed as
the model is presented.

The presence of microvoids in polycrystalline materials in the as-produced state
has been documented in many research and review articles (Curran er a/. 1987). These
microvoids can vary in size from 1071010 cm, with an average density of the order of
10® per cm’ and an average initial void volume fraction between 10°-107 (Eftis 1996). In
addition, it has been demonstrated experi~ entally that it is the growth of this initial
density of microvoids in combination with the nucleation and growth of new microvoids
that eventually leads to the formation of ductile cracks and spallation or fracture of the
material.  Figure 4.2 illustrates the final effect of this microdamage process. The
nucleation process is dependent on the number and character of the nucleation sites that
are available in the crystalline material.  In general, the nucleation of voids occur at
microscopic heterogeneities in the matenial like preexisting flaws, inclusions and second

phase particles, grain boundaries and subgrain structures (Curran er al. 1987). Figure 4.3
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1s evidence that inclusions in the material can serve as nucleation sites. In this figure the
inclusions are still observable inside the voids that have grown to many times their initial
diameters.
) 2§
. (b) ' & %
| :
£00

Figure 4.2 Ductile cracks. (a) Ductile crack propagation by void coalescence; (b)
Tip of ductile crack shown in (a) at higher magnification (Curran er al. 1987).
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Figure 4.3 Fracture surface of ETP Copper (Zurek ef al. 1996).

4.4.1 DMicrovoid Nucleation Rate

The model used for the simulation of void nucleation has its origin in the form
proposed by Seaman er al. (1976). Perzyna (1986) further modified this model to an
activation-rate form, which also makes provision for the effect of void interaction during

the nucleation process, so that the void nucleation rate model has the form

c h [- [ml"Om_.On
S = ——|&Xp| /™

~1|, o<o, (4.38)
==l

1=3

-

In the abuve, m,lo-o,| is the nucleation acuvation energy, on is the mean stress. o, is

the threshold mean stress for nucleation, T is the temperature, k 1s the Boltzman constant
and m; are matenal parameters and h simulates the effect of void interaction. The void

nucleation contribution to the total void volume fraction, given by the time integration of

Equation (4.38), has a limiting value, i.e., £ <& . This limit is controlled by the

n = 2onm

number of nucleation sites available in the material in the form of heterogeneities (Curran
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et al.1987). The values for the nucleation threshold stress found in high velocity impact
literature are mostly obtained from high velocity plate impact tests (Curran et al. 1987).
The high shock compression associated with impact at hypervelocities. can cause
substantial strain hardening of the material, particularly at the impact sides of the target
and projectile. This effect is indirectly exhibited- by the higher nucleation thresholds for
the harder metals, e.g., Ni-Cr-Steel, as compared to softer materials such as Copper or
Aluminum, and may be expressed by assuming the microvoid threshold nucleation stress

to be proportional to the current yield stress,

5. = céno [cl +c2(gn)"]{1+c,1n[§-ﬂ (4.39)

&g

where oo Is the nucleation threshold determined by plate impact tests and the rest of the
parameters are as defined ih Equation (4.33). The nucleation threshold has the same
functional form as the Johnson-Cook model for the equivalent yield stress, except that the
temperature factor is excluded since the temperature dependence is already included in
the void nucleation rate equation a*ove. Several authors have implemerted this model
for nucleation but have used a constant nucleation threshold (Perzyna 1986, Eftis et al.
1991 and 1992, and Eftis 1996). Since most of the validation of the mode! was done with
simulations of high velocity plate impact tests, the results that were obtained were
acceptable. However, when a constant value for the threshold is used to simulate
hypervelocity impact the nucleation model with constant nucleation threshold stress no
longer gives acceptable results, and a variable threshold as described by Equation (4.39),

IS necessary.
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4.4.2 Micro Void Growth Rate

The rate of change of the void volume fraction model is based on the ideaiized
spherical hole described by Carroll er al. (1972). In their model they assumed that the
yield stress of the material was constant (perfectly plastic material) and ign-red thermal
effects. The spherical void model was further developed by Johnson (i981) to include
strain rate effects in the constitutive model of the material and was the first to infer that
thermal effects might be important. The model was later improved by Carroll by
studying the effects of several material isotropic hardening laws. Perzyna (1986) included
linear strain hardening in addition to the rate effect. The linear hardening model
proposed by Perzyna was proved unsatisfactory by Eftis et al. (1991, 1992) and was
replaced by a saturation hardening model. Thermal effects were not included.

The development of the spherical void model is presented and includes several
improvements over the models preseméd before. The derivation of the model begins by
replacing the microvoids embedded in the material by a random distribution of spherical

voids (Figure 4.4).

Figure 4.4 Element of the solid with microvoids replaced by idealized spherical
voids (Eftis 1996).
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If the rectangular volume of Figure 4.4 is subjected to the actions of mean stress
&(t) that varies with time, only the solid cross-sectional area will support the applied
stress. The sectional area occupied by the voids does not support anv stress. Thus.
mechk-nical equilibrium requires that (from this point on the time dependence of the
variabvles 1s implicit),

AG = Ac (4.40)
where A is the total cross-sectional area (i.e., including the area of the microvoids), T is
the mean stress acting on A, A is the solid portion of the cross-sectional and o is the
mean stress acting on the solid material with sectional area A. For a random distribution

of voids shapes and sizes the following holds,

A v

= =z (4.41)
where v is the volume of solid material and V is the total volume of material.
Substututing Equation (4.41) in (4.40),

o =adc (4.42)

where, a = ‘/: 1s defined as the void distension.

Considering an idealized void with spherical shape and radius a in a sphere of

radius b where the outer boundary is subjected to mean stress o (figure 4.5).
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Figure 4.5 Idealized spherical void with average mean stress.

The equation of motion for the configuration shown in Figure 4.5 can be defined

in spherical coordinates. Taking account of spherical symmetry,

; 2
Cir” +=(T, ~Ty)=pt (4.43a)
CT r

The boundary conditions require
~ (4.43b)

where Ty is the radial stress acting on a spherical differential element (Figure 4.3). Tog is
the tangential stress, p is the density of the solid material, and t is the material radial
acceleration. Making the assumption that nearly all the volume change is associated with

void growth and very little with volume strain in the solid material surrounding the void,

r* =1, -B(t) (4.44)

(4.45)




where B(t) is a function related to the rate of void growth.
By means of Equation (4.44) the radius of any point that initially had radius ro.

can be determined. Differentiating Equation (4.44) twice with respect to time,

. __B()_2B() ) (4.46)

3r? or’

Integrating Equation (4.43) from a to b (inner to outer current radius) and substituting

Equation (4.46),

p[¥(b,1)-¥(a,1)]= a5 + bj%(T,, - T, )dr (4.47a)
where,

Y1) = By, B’ (4.47b)

3r 18!

By means of Equations (4.44) and (4.45),

a, —Q
B(t)=a,'| =2 (4.48)
a, -1
. . b, o
where ag is the initial inner radius and a, = —— the initial void distension.
o 4

Substituting Equation (4.48) into (4.47) and rearranging terms,
: b
.o _ (2
1Q(a.a.a)= 0T + I— (T -T,)dr (4.49a)
T
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where
pa 2 .
T—— = % (4.49b)
0
and
Qla,a,a)= [(a - u"“]d - %[(a 1) ~a™" ]('12 . (4.49¢)

At this point, a constitutive model for the material surrounding the void has to be
introduced to completely define Equation (4.49). It can be shown that the elastic and
elastic-plastic phases of the deformation of the material surrounding the void produce a
very small volume change compared to the plastic deformation contribution. For this
reason, as an approximation, void growth is going to be modeled as a fully plastic process
(Johnson 1981). In other words, void growth is only going to occur when all the gray
area shown on Figure 4.5 has yielded. The yield function Y used for the constitutive
model has a form similar to the modified Johnson-Cook model shown in Equation (4.33)
but without the damage softening effect and with the <irain rate effect as an additive term.

Y, (c°.f:°.T.r)=_ -—}f(r,, —Tee)=i[Cl +C, ) ]{1_(Mjﬁ}tn(1‘(r»€"’ (4.50)

NES T -T,
where n(T(r)) 1s the temperature dependant viscosity at any radius of the matenal
surrounding the spherical void. The negative sign in the difference of stresses term
comes from the fact that when the applied mean stress (6) is positive, the difference

between the radial and tangential stresses is negative (Malvern 1969). The % sign
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indicates that the yield stress is positive when the mean stress is positive and negative
when the mean stress is negative.

In applications of the microvoid growth model for description of spall fracture
induced by plate impact (Johnson 1981 and Eftis er al. 1991) it w~_ found that the
numerical simulations would correlate with experimental data only ir the viscosity of the
solid material surrounding the void has a value of approximately 10 Poise, three to four
orders of magnitude smaller than room temperature yalues. It was suggested that the
large shear strains at the pore wall cause temperature increase close to melt temperatures,
thereby greatly reducing the viscosity of the surrounding material. The variation of the
viscosity with temperature is given by Equation (4.34), with the melt temperature
Ta=Tmo. i.e., the value at zero volume strain (Equation 4.44).

To simplify the integration of Equation (4.50) when substituted into (4.49a). the absolute

temperature used in Equation (4.50) is taken at a fixed radius (1) in the vicinity of the

inner radius (a).

t(t)=a~q(b-a). 0<qg<l. (4.31)
If =0 then ©(t) is the inner radius (a), and if q=1 then ©(t) represents the outer radius
(b).

Substitution of Equation (4.51) into (4.50) eliminates the radial dependence of the
temperature and implicitly of the viscosity as well. Thus

T-T,
T.-T,

(8,67, T) = - (T —Tee)=i[C, +c:(c°)"] 1—[

B
7 j +q(TE® (4.52)

3

where T is the temperature at radius 7.
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From Equation (4.44) the radial displacement can be calculated to be

I3 ' .
u, =r-r, =r-—[r3 +B(t)] (4.53)
and for small displacements and strains, the small strain tensor in spherical coordinates

and with radial symmetry has the matrix representation

N
cr
Er=l 0 a0 (4.54)
r
0 0 lur
- r -

The equivalent plastic strain is given by (Malvern 1969),

2 12
er =2=|(er - E% ) +(ER -EZ, ) (4.552)
o I
which reduces to
- -
o =5!u—'*c—?—'I~ (4.55b)
3ir cr ,
The equivalent plastic strain rate is
{5 &u
c°=i|:!i—+ . (4.56)
di\3;r cr

The integral that appears on the right hand side of Equation (4.49a). after
substitution of Equations (4.55), (4.56) and (4.53) in Equation (4.52), is not developed
here because it is a lengthy calculation. Only the final result is shown,

b

19

. T

(T"—Tee)dr=$?-;—/-§{:q1 E‘i—lj—(é)nc,i(a)}ﬁ)i-?,%xﬁ)‘ a(ad-1)ﬁu* (4.57a)

where




(o) = J l}x(l+x)'m’ndx | (4.57b)

fﬁ){l—[fm—-?o ﬂ (4.57¢)

1 2/3 2/3
F= <1|: o= } (o —1{i} . (4.57d)
o, -1 o,

The integral in Equation (4.57b) is non-elementary and has to be solved numerically. -

and

The substitution of Equation (4.57) in Equation (4.49) gives,

) ?(a# (4.58)

u_

23 a 2Y .- =\ 4 =
a,a,0)=(a0)¥—|Cln — |-|=| C,I T)+ T
wace)-tas 22 cuf 2 2] e ol
If we take the limit of Equation (4.58) as & and & approach zero,
V243 " —
5, = 11273 c,ln[-u—)—(g) C ()| f(T) (4.59)
\a) 3 1) (3

Which represents the threshold mean stress for void growth (+), ur void volume reduction

(-), and includes the power isotropic hardening and the thermal softening. Oncev the
externally applied mean stress (G)reaches the threshold (G.) the spherical void begins
to grow or shrink.

Substituting‘ Equation (4.59) into (4.57),

1Q(d.a,0) = a(5 -5, ) ¥ 3:}5 n(ﬂ m ¢ F(a) (4.60)

a-1)

g T

focs <l SR
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To express Equation (4.60) in terms of the void volume fraction (&) instead of

void distension (o), the following relation can be derived from the definitions of £ and a

mentioned above,

o= E-l_g (4.61a)
Differentiating,

__ &

Q= - (4.61b)
(1-g)

o 22 + : (4.61c)

Q= 5 blc
(1-gf (-gf

Then substituting Equations (4.61) into (4.60) and arranging terms,

oA, £+BE )£ n(T) &) = (G -55) (4.62)

where,

g '})J (4.63)

B, = {2(5“ fl)_l(é_m ‘]):l (4.69)

5 23
Y
1= &(—5—9—] ,a3,=10"cm (4.65)

-2 14
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B(1)v? "
@)= [ <feli+2)™] a
B(t)a® *
B(t) 1 éo-éj
a’ E\1-&,
b* 1-¢&,

(4.67)

(4.68a)

(4.68b)

(4.68¢)

The term T(Al £+ B,éz) represents the inertial resistance to microvoid volume

change, n(T)iiF(ﬁX the viscous material resistance to plastic flow and (6 - EG) the mean

stress difference that drives the void growth.

As voids grow in the material, they initially grow independently. However, in the

later stages before fracture, they begin to interact. First, their plastic strain fields intersect

and then a stronger interaction takes place (Curran et al. 1987). It is this interaction that

represents the fnal stage of failure of the matenal.

Eftis er al. (1991) proposed a

modification to the void growth Equation that would take void interaction into account as

the growth process progresses. This is done by the inclusion of an exponential function

in Equation (4.62),

oA, & +BE )£ n(TJEFE) = e*(5-5c), & >0

oA £+ B )en(TeFE) = (6-5;). E<0

(4.692)

(4.69b)
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where ¢ is a material parameter. Equation (4.69b) differs from (4.69a) in that it does not
include the coalescence effect since under void volume reduction there is no coalescence

effect of the microvoids.
The microvoid nucication rate én given by Equation. (4.38), when added to the
solution of the Equation (4.69) for the void growth rate ég , provides the total microvoid

rate of change,

M.

L +E, (4.70)

Je-

Under mean-stress tensile loading microvoid nucleation and growth will continue

until it reaches the critical value & and material fracture occurs &f.

4.4.3 Temperature Near the Wall of a Microvoid

The temperature change in the vicinity of the walls of a microvoid (hollow
sphere) 1s governed by the plastic rate of mechanical work,

pC.T = (T -D?) (4.71)
whcre C. is the specific heat at constant volume, and w gives the percentage of the rate of
plastic work mal is not stores as cold work, ie., that dissipates into heat. For
polycrystalline materials w=0.9. In view of the spherical symmetry only the radial
component of T’ and DP are non-zero so that

w(T-D°)=T,-D* (4.72)

where




and by using the simplification proposed by Equation (4.51) it can be shown that i

and

, 2
T z—(Tn —TOG)

m -

[

()

r3

D? =

(VSRR N

(T. - T, ) = :ﬁ[c, +cz(§")‘]{1-( T-T, ﬂtn(f)ép

Tm - TO
Further omitting the detailed calculations it can be shown that

2" 1 207

— 2
g€ =—
3

B() _ (5, -8) 1
P E(-&)e(E)
B(t) g 1

From Equations (4.72)-(4.74) expression (4.71) can be reduced to

- 4 B(t
pc\T=m5(Tn —Tee)—f—(s—)
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(4.73)

(4.74)

(4.75)

(4.76)

4.77)

(4.78)

(4.79)

(4.80)

(4.81)
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Equation (4.81) represents the temperature rate at any radius that is a fraction (q).
between the inner and outer radius of the void. The temperature calculated through the
integration of Equation (4.81) gives the temperature used in Equation (4.69a) for the
temperature dependant viscosity and in the temperature-softeninc, factor (Equation 4.57¢)
applied to the growth threshold mean-stress in Equation (4.67). This void temperature
calculation provides analytical justification for the reduced temperature-independent
viscosity used by Johnson (1981) and Eftis er al. (1991), and represents an important
improvement over the previous models.

Combining expressions (4.75) to (4.81) the temperature rate at some location in

the vicinity of the inner pore wall can be expressed by

= 4o ; F,
T—gpc‘ 37, - . (4.82)
a(l—a){nq“—) —l]}
g
where
V=2 (T, - T, ) (4.83)

represents the second invariant of the stress deviator tensor, the equivalent of whicli can
be calculated by using Equations (4.75)-(4.79), and where 0<q<1. Equation (4.82)
makes explicit the fact that the thermal heating near the wall of the microvoid is caused

by the shear stress and plastic rate of change of the microvoid volume fraction.

4.5 Equations for Internal Energy and Temperature Rates
Due to the rapidity of the deformation following hypervelocity impact, the

deformation and fracture processes develop under adiabatic conditions. In addition, if we
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consider thatl there are no external heat sources, then the local energy rate balance
Equation (4.4) simplifies to
pE = tr(T- D) (4.84)
This ev,.ession can be developed further by decomposing the stress and rate of
deformation tensors into déviatoric and mean (or volumetric) components, making use of

(4.5) and the relation

v

D = -——. (4.85)
1-vy
It the follows that
pE = o, 1—i"—+tr(T-D'°)+u(T.D°). (4.86)

where the mean stress is given by Equations (4.13) and (4.14). If we specifically
consider the internal energy as thermal energy, then pE = pC.T. Since small elastic

shear deformation does not cause temperature change, U(T-D")= 0. In as much as

elastic volume reduction increases temperature while elastic dilatation causes temperature
reduction. consistency requires - to be replaced by |0m]. Taking account of the fact

that only a fraction, w, of the plastic work dissipates into heat. Where w=0.9 for

polvcrystalline metals, we have the local temperature rate.

pC‘T=|om|1:vW+Qtr(T-D°). (4.87)

e e p—r - ———




CHAPTER 5

NUMERICAL IMPLEMENTATION OF THE CONSTITUTIVE MODEL

The set of coupled, highly non linear equations described in chapters two. three
énd four canno. be solved analytically, unless simplifications of the constitutive model
are introduced. For this reason numerical solution of the conservation equations and
constitutive model represents the only viable approach.

Historically, the computer programs used in the simulation of shock deformation
problems have been called “Hydrocodes”. This name was used because in the initial
development these computer codes used a hydrodynamic material model to simulate solid
materials, i.e., where the stress and strain fields are assumed to have no deviatoric
components (Johnson ef al. 1987). One of the justifications for this type of simplification
was the fact that the shock stresses are considerably larger than the dynamic yield stress
of the material. After recognition that deviatoric effects were important in the simulation
of initiation and e¥pansion of the detonation products of high explosives, Wilkins er al
(1974) developed the procedure to incorporate deviatoric stress effects into computer
codes. Since then, a great volume of work has been done directed towards the
improvement of the numerical schemes used to solve the differential equations that define
shock-induced deformation problems.

Currently there are several “Hydrocodes” produced by government and private
crganizations. The codes most widely used for the simulation of hypervelocity impact

problems are, Dyna2D and 3D produced by the Lawrence Livermore National
63
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Laboratory, CTH produced by Sandia National Laboratory, EPIC-2 and 3 and
Autodyn2D™ and 3p™ produced by Century Dynamics Inc.

For the purpose of selecting a “Hydrocode” to implement the constitutive model.
evaluations of CTH, Dyna2D and AutodynzDTM were performed bz.ed on their
capabilities and ease of implementation of new constitutive models. Gf the three codes.
Autodyn2D™ was selected because it has a user-friendly interface, includes the
capability of running simulations with Lagrangian and/or Eulerian grids, and has the built
in capability of compiling external functions to implement new constitutive models.
Even though the capability to include external functions was an important factor in the
selection of the code, in the end, that capability was not used because the constitutive
model described in this dissertation is too complicated to be implemented just through
external functions. Century Dynamics Inc., the originators of Autodyn, provided access
to some of the internal subroutines that needed to be modified to successfully implement
the model. Because of copyright restrictions, a thorough description of the subroutines
that were modified cannot be published. :

Although the equations described in the previous chapters describe a continuum,
the computer code has to use a discretized version of the equations. This discretization is
applied both in space and in time. The finite element method (FEM) and the finite
difference method (FDM) are the methods of discretization in space. In “Hydrocodes”
the time integration is done through an explicit central difference scheme in which the

time derivatives are replaced by difference equations where the value of the function at

the new time step is only a function of the value in the previous time step.

wr
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Once the discretized form of the equations is obtained, they have to be structured
within the framework of ‘a computer code. Most of the codes available today are based
on the work by Wilkins er al. (1974), with minor modifications. He described how the
discretized form of the equations had to be obtained and the ‘numerical scheme that had to
be used to advance the simultaneous solution of the equations in time at every time

increment.

5.1 Numerical Simplifications

Because the solution of the set of field and constitutive equations is framed
around a pre-established numerical scheme that is the foundation of every computer code,
the inclusion of a given set of constitutive equation has to adapt to the established
scheme. It would be desirable to be able to implement any constitutive model with no
restrictions, but that is not possible.

During the implementation and testing of the constitutive equations in the
Autodyn™ code, a series of di€liculties were encountered. These difficulties restricted

the implementation of the equations and a series of modifications had to be applied to

make the simulations feasible.

5.1.1 DModifications to the Viscoplastic Constitutive Model
" The viscoplastic constitutive model presented in Section 4.3 of the dissertation
was not implemented in the original form because it required modifications of sections of

the code to which we did not have access. For this reason, the calculation of the
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equivalent plastic strain as described in Equation (4.36) was not used and the calculation
already implemented in Autodyn™ was used with some modifications (Autodyn™.
Theory Manual).

T' 2 viscoplastic constitutive model in Autodyn™ takes the form described by
Wilkins er al. (1974) with the additional consideration that the model has to take into

account the volume compressibility of the material due to the presence of microvoids that

can grow or reduce in size.
The constitutive model that describes the deviatoric viscoplastic response of the

material is based on the von Mises yield criteria, which can be stated as follows,

\{2

I, == (5.1)
J

where J» 1s the second invariant of the stress deviator tensor and Y 1s the equivalent vield

stress. Thus, when J, < Y% the material is in an elastic state of stress. and when

J. > Y / the material is in a state of plastic yielding.

The definition of the equivalent yield stress (Y) is based on the Johnson-Cock
model (Johnson er al 1983), but with the addition of a damage softening term to reflect

the deterioration of the yield stress as the void volume fraction increases, i.e.,

8
n - P T—T E"‘;
v(e*. e T.2)=|C, +C,[e* ) |1+C 1{‘_-]} 1—[——3-) 1—[ 220 j (5.2)
‘ ) [ ( )[ 3 €0 T,.-T, Sr &0

which is identical to Equation (4.33).

The equivalent plastic shear strain is defined as,
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£f = j@dz (5.3)
3p

where,  is the shear modulus as defined in Section 4.2.
It should be noted that the definition of the equivalent plastic strain defined by Equation
(3.3) has all the material behavior features (strain hardening, rate effects, thermal

softening and material damage softening) that Equation (4.36) presents.

5.1.2 Modifications to the Void Growth Model

After implementation of the void growth model described by Equations (4.62)-
(4.68). a series of tests were performed to determine what would be the time increment
that would give a converging solution given the explicit integration scheme used. It was
discovered that the time step required was two orders of magnitude smaller than the
required to do the simulation without the growth model. This implied that a simulation of
a hvpervelocity impact event as described in Chapter six would require approximately 30
davs. This was prohibitive given the time constraints. For this reason. the model
presented in Equations (4.62)-(4.68) was simplified. The simplification consists of the
elimination of the inertial effects, which reduces the nonlinear second order differential

equation to a first order nonlinear differential equation,

. e*(G-5;) ; a
= nTF(é) ,E>0 (5.4a2)
g_(a_ac) r g
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The implications of this simplification in a hypervelocity impact problem are hard
to infer and will be material of further research. Nonetheless, the modifications and
improvements made to the previous models presented by Johnson and Eftis are still part
of the simplified mndel. The temperature local to the microvoid wall, the temperature
dependence of the viscosity and the use of a viscoplastic constitutive equation that
includes nonlinear strain hardening, strain-rate hardening and temperature softening, for
the behavior of the solid material of the hollow sphere are included in the simplified void
growth rate equation given by (5.4).

The question of the importance of maintaining the inertial term of the differential
Equation (4.62) is simulations of very high strain-rate dynamic microvoid growth is an
open question at this time, with adherents on both sides of the issue (Johnson 1981 and

Tong et al. 1995).

5.1.3 DModifications to the Temperature Rate Equation

Even though the temperature rar- Equation (4.87) was derived through the use of
the energy rate balance equation that applies to any material under any loading condition,
its implementation presented some difficulties. Under large volume expansion, Equation
(4.84) has the tendency to give temperatures that are well below the room temperature
and close to absolute zero. This was observed specifically in the ejecta nm produced in
the simulation of hypervelocity impacts of spherical projectiles described below. It is
suspected that Equation (4.87) may need a time step that is much smaller then the one

used for it to converge to a solution. A study of this problem will be material for further

:
!
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research.  Thus, the temperature calculation was done using the model already

implemented in Autodyn™ (Autodyn™, Theory Manual), which is derived using
classical thermodynamics,

. i . p
fo ¥ pep,, v D)
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-y p pC, -
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where v is the Gruneisen coefficient as defined by Equation (3.20).




CHAPTER 6

NUMERICAL SIMULATIONS

In the literature review presented at the beginning of this dissertation, several
papers were cited that employed similar constitutive models to the one presented in this
work for the simulation of plate impact problems. Even though those models were
simpler than the one described here, the use of those models for the simulation of impact
problems were limited to very simple configurations. Most of the simulations were done
for one-dimensional shock plate impact problems in the low to medium velocity range
(Eftis er al. 1991, Cortes er al. 1995). Simulations of impact in the hypervelocity range
have used a very simple limit strain or stress fracture model that does not model the
evolution of material degradation in a realistic form (Quifiones e al. 1998). For this
reason. the numerical simulation of hypervelocity impact of spherical projectiles with
metallic target plates using the microdamage constitutive model shown here constitutes a

step forward in the constitutive modeling and simulation of hypervelocity impact.

6.1 A Shock Pressure and Temperature Calculation

Prior to the implementation of the constitutive microdamage model into
Autodyn™, a series of simulations of a representative point behind a shock wave were
performed. A special program was developed using Delphi™ (Pascal compiler) to time
integrate the governing equations, and plots of different variables were generated through

a Matlab™ program. The objective of these simulations was to verify that all the
70
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components of the constitutive model were showing the expected trends in terms of the
behavior of the field variables. A comparison is shown in Figure 6.1 of the calculated
and experimental shock-pressure volume strain curves for Copper. This figure shows a
very good agreement between thz calculated and e*perimental curves indicating the
suitability of the equation bf state presented in Chapter 3 for pressures up to 142 C'Pa.
Figure 6.2 illustrates the calculated temperature rise with increasing pressure, where the
solid curve is determined from the temperature rate Equation (4.87), while the open circle
curve was calculated by others using the equations of classiéal thermodynamics
(McQueen er al. 1960). In addition, Figure 6.2 includes a plot of the corresponding melt
temperature (Equation 4.25, dashed line) for the corresponding pressure rise, which
indicates that at approximately 155 GPa, the material reaches the melt point according to

equation (4.87) (solid line).
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Figure 6.1 Calculated and experimental (open circles) pressure versus volume
strain curves for Copper (circles, McQueen ef al. 1960).
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Figure 6.2 Calculations of temperature versus shock pressure for Copper using
thermal energy rate balance (solid line) and classical thermodynamics (circles, McQueen
et al. 1960), and melt temperature (dashed lines).

Because of the great difficulty in obtaining temperature measurements, directly or
indirectly, of thermal changes that are of nano-second duration, there is no experimental
Jdta available that measures high shock-pressure induced temperature fluctuations. For
this reason. a conclusion as to which temperature calculation gives a temperature closer

to reality cannot be reached. This topic requires further research.

6.2 Hypervelocity Impact of Soda-Lime Glass Projectiles on Al Target Plates
To test the capability of the constitutive model to simulate the deformation
process, micro-damage evolution and finally fracture developed under hypervelocity

impact, for different projectile diameter to plate thickness ratios a series of experimental




results on 1100 Aluminum plates were selected. Horz er al. (1995) presented results from
a series of hypervelocity impact experiments of soda-lime glass spherical projectiles of
3.175 mm diameter that impact Al; ;g0 plates of varied thickness at a nominal velocity of
6.0 km/s. In all “en experimrats were presented where the target plate thickness varied
from 1.06 to 51.75 mm, while all the other parameters (projectile and target materials,
projectile diameter and velocity) were kept fixed. Out of these ten experiments, three
were selected to be simulated using the Autodyn™ code that was modified to include the
constitutive model presented in this dissertation. Figure 6.3 shows postmortem pictures
of the three cases selected from Horz er al. 1995. Also, Table 6.1 lists the dimensional
characteristics of the three hypervelocity-impact cases. These three hypervelocity
experiments were selected because they cover a wide range of plate thickness that result

in three widely varied levels of damage.

Figure 6.3 Cratering and penetration events in Al}go targets of three different
thickness (a=12.5 mm, b=7.61 mm and c=1.59 mm) using 3.175 mm diameter soda-lime
glass projectiles at 6 km/s (Horz er al. 1995).




Table 6.1 Dimensional characteristics of hypervelocity impact cases.

Experimental PROJECTILE TARGET
Case Diameter (mm) | Velocity (km/s) | Thickness (mm)
A 3.175 6 12.5
B 3.175 6 7.61
C 3.175 6 1.59
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6.2.1 Computer Simulations Description

The simulations in Autodyn™ of the hypervelocity impact events previously
described were setup using Lagrangian type grids for both the target and projectile. In all
three cases the “Transmit” boundary condition was used to simulate a semi-infinite plate
widthwise. The “Transmit” boundary condition allows a shock wave to move though the
boundary of the grid without producing any reflection. In addition, advantage was téken
of the fact that the impacts were normal to the target plate alldwing axial symmetry to be
used in the space discretization of the pfojectile and target. Figures 6.4 to 6.6 depict the
grid configuration usea ‘or the three simulations corresponding to the experiments
previously mentioned (see Figure 6.3 and Table 6.1). In all three simulations, the
incremental-geometric-strain “eroding” algorithm was implemented for both the target
and projectile with a 2.5 limit strain. This algorithm “erodes” (discards) the cells that
reach the limit strain thus eliminating the cell-entangling problem that exists in
Lagrangian grids.

Once void volume fraction reaches the critical value &¢ (integration of Equation

4.70) at any cell within the grid, that cell is “eroded” away to simulate the local fracture




75

of the material. This has the disadvantage that the internal energy still stored in‘ the
eroded cell is eliminated. Autodyn™ does not provide any other way to simulate fracture
in Lagrangian grids, and the implications of eroding a cell with high internal éncrgy
«unnot be determined. The material parameters for Al;jo0 were obtained from numerous
published works of other authors. Table 6.2 shows the material parameters for Aljj0
together with a brief description of where they appear in the microdamage constitutive

model.

===

=EESS=S====

33 SESS

Figure 6.4 Grid configuration for simulation (a) corresponding to a target plate
thickness of 12.5mm.
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Figure 6.5 Grid configuration for simulation (b) corresponding to a target plate
thickness of 7.61mm.
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Figure 6.6 Grid configuration for simulation (c) corresponding to a target plate
thickness of 1.59mm.




Table 6.2 Material parameters for Aljiqo.

Parameter | Value Note
Po 2.77 g/em’ Initial density
Co 5.328 km/s Bulk sound speed
S 1.338 Slope of the shock to pér‘ticle speeds
; Yo 2.0 Gruneisen constant
I C. | 875J/Kg°K | Specific heat
To 300 °K Initial temperature
! Tmo 923 °K Initial melt temperature
: k 1.38x10°% J/°K | Boltzman constant
‘ w 09 Fraction of plastic work dissipated as heat
Ko 78.6 GPa Initial bulk modulus
Ko | 27.6 GPa Initial shear modulus
A -7.245 Constant in the definition of the Gruneisen coefficient
1 G 150 MPa Yield stress in Johnson-Cook (JC) model
i G 170 MPa Strain hardening constant in the JC model
C; l 0.015 Strain rate hardening constant in the JC model
n | 0.34 Strain hardening exponent in the JC model
B 1 1.03 Thermal softening constant
a | 1.5 Constant in the definition of the melt temperature
a> | 0.004 Elastic coefficient temperature constant
o i 10° Pa's Initial material viscosity
N 12x10” Pa-s Melt temperature viscosity
m, P2 Exponent in the plastic rate of deformation
i 1107 Initial void volume fraction
e 10.3 Critical void volume fraction
Eom 1'5x107 Maximum void volume fraction from nucleation
: Qo | 10~ cm Average initial radius of microvoids
' h 7.54x10“ 5™ Constant in the void nucleation model
Gno | -300 Mpa Mean stress threshold for nucleation
o 20 Constant in the void growth model
m; 10.3x10° Constant in the void nucleation model
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For the case of the Soda-Lime glass projectile, the microdamage constitutive
model presented above cannot be applied since the model is applicable only for ductile
polycrystalline materials. For this reason, the Johnson-Holmquist brittle material model
already implemented in Autodyn was used with the materi~' parameters available in the

materials Itbrary for glass, and in the paper by Taylor et u/. (1999).

6.2.2 Simulation Results

The graphics capability of Autodyn™ allows the generation of contour plots of
any field vanable that forms part of the constitutive microdamage model. For the
purpose of presenting the results of the simulations only pressure, temperature and void
volume fraction contour plots will be shown.

Figures 6.8 to 6.10 give contour plots of the pressure, temperature and void
volume fraction for the 12.5mm thick target plate (Case A, see Table 6.1) at Opus, 0.3us,
1.0ps, 1.5ps. 2us, 2.5us, Sus and 20ps after impact. Figures 6.8(a), 6.9(a) and 6.10(a)
illustrate the invitial conditions just before impact. At J.ous after impact (see Figures
6.8(b). 6.9(b) and 6.10(b)), the maximum pressure at the bottom of the target is 26GPa
and the corresponding temperature is 680°K. [t should be noted that as the shock-
compression wave moves through the target, the void volume fraction is being reduced to
zero, which is indicated by the dark blue color in Figure (6.10b). At the moment of
impact, the pressure in the target reached a maximum of 58GPa and the corresponding
temperature 1s 900°K, but after 0.5pus they have decayed to the values shown in'the

figures. In these figures, the formation of a target rim is already evident. Figures 6.8(c-
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e), 6.9(c-e) and 6.10(c-¢), the shock wave continues to move across the target with the
corresponding decay of the pressure and temperature and the reduction of the initial void
volume fraction. In the pressure plots (see Figure 6.8), it should be noted that a tensile
wave, reflected from the rear of the projectile trails the shock-compression wave. C.ce
the shock compression wave reaches the back of the target plate it is reflected as a tensile
wave that is superimposed on the trailing tensile wave. This superposition of tensile
waves enhances the nucleation and growth of microvoids, which eventually leads to
fracture. This effect is shown in Figures 6.8(e-f) and 6.10(f), where the void volume
fraction has reached the critical value and spallation (fracture) has begun. Figures 6.8.(h).,
6.9(h) and 6.10(h) illustrate the state of the target plate at the end of the simulation (20ps
after impact). At this time in the simulation, the geometrical changes of the target plate
are negligible and the change in void volume fraction is zero. The predicted final crater
penetration 1s 7.2mm compared to 7.3mm in the experiment. The predicted crater
diameter is 12mm while the experimental is 12.5mm. This gives a depth of penetration
to crater diameter (P/Dp) of 0.6 for the siinulation and 0.58 for the laboratory experi..uent.
The predicted diameter of the spallation area is 12.5mm and is 19mm for the
corresponding laboratory experiment, indicating a thirty three percent error in the
prediction of the spallation diameter.

Figures 6.11 to 6.13 give contour plots of the pressure, temperature and void
volume fraction for the 7.61mm thick target plate (Case B, see Table 6.1) at Ops. 0.5us,
1.0ps, 1.5ps, 2ps, 2.5ps, Sps and 20pus after impact. Figures 6.11(a), 6.12(a) and 6.13(a)

illustrate the initial conditions just before impact. The evolution of the simulations for

o e e

e e gy T
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Cases A and B (see Table 6.1) are identical up to approximately 1.0us after impact,
corresponding to contour plot (c) of Figures 6.8 to 6.10 and 6.11 to 6.13. Figure 6.11(d)
shows the initiation of spallation after the reflection of the compression shock wave and
its superposition with the trailing tensile wave. At 2us after impact (Contour plot (e) of
Figures 6.11 to 6.13), the préjectile has “eroded” enough of the target plate so that the
crater reaches the spallation area. In contour plots (f) to (g), the spallation diameter
reaches its maximum value and the target back wall continues to bulge, driven by its
momentum, while the penetration hole gets wider. Figures 6.11(h), 6.12(h) and 6.13(h)
illustrate the state of the target plate at the end of the simulation (20us after impact). The
predicted diameter of the penetration hole is 11mm while for the laboratory experiment is
11.4mm. The most significant difference between the simulation and the labora'tor)'
experiment is that in thé simulation the spall does not detach at the same point as the
laboratory experiment. The fact that in the simulation the spall section that is left
attached 1o the target plate has reached an equivalent plastic strain of 1.2 (120%).
indicates the possibility that another fracture mechanism, one that 1s not taken into
account in the simulation and is operating in the laboratory experiment.

Figures 6.14 to 6.16 give contour plots of the pressure, temperature and void
volume fraction for the 1.59mm thick target plate (Case C, see Table 6.1) at Ops, 0.5ps,
1.0ps, 1.5ps, 2p§, 2.5us, Sus and 20us after impact. Figures 6.14(a), 6.15(a) and 6.16(a)
illustrate the initial conditions just before impact. In this last case, the projectile
penetrates the target plate at approximately 1.0ps as shown in contour plot (c) of Figures

6.14 1o 6.16. After initial penetration, the penetration-hole continues to grow and the

e S er g e T

P )
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rims at the front and back of the target plate continue to develop as shown in contour
plots (d) to (g). Figures 6.14(h), 6.15(h) and 6.16(h) illustrate the state of the target plate
at the end of the simulation (20ps after impact). The predicted diameter of the
penetrz.ion. hole is 8.5mm while for the actual laboratory experiment it is 8.8mm. Itis
interesting to note the microdamage developed close to the wall of the penetratiothjvhole
which is apparent in contour plots (c) and (d). Itis the opinion of the author that this does
not happen in the actual laboratory experiment, but it is not possible to determine if this is
true since there are no radiographs at different times of the target plate through the
penetration process. The reason for the appearance of microdamage in the numerical
simulation may possibly be that there is another fracture process acting that is not being
modeled in the simulation. For example, if the target plate fails because of shear
banding, the tensile mean stresses needed to create the fracture shown in contour plots (¢)
and (d) may not be reached. This phenomenon is demonstrated by Figure 6.7, which
shows a polished and etched cross section through a rod and a target plate for a cﬁse of
partia' penetration. In this picture, two fracture mechanisms are evident in the iarget
plate. In the upper portion of the penetration hole, as indicated by the arrows. shear
banding that runs through the remaining section of the plate has occurred, while in the
lower section of the hole, shear banding is not evident and a tensile crack has developed
instead. Thus, the fact that formation of shear bands that run through the target plate
(plugging) impedes the formation of cracks or microdamage in thé plate, indicates that

the implementation of a shear band fracture mechanism is needed to accurately simulate

B T Tl ot

i e g —pr—
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the penetration process and eliminate the unrealistic development of microdamage close

to the wall of the penetration hole.

TENSILE GRACK
DEVELOPMENT

Figure 6.7 Microfailure features observed on a section taken through a steel plate
and embedded steel rod after impact (Shockey et al. 1979).
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Figure 6.9(1) Temperature contour plots for 12.5mm thick Alje0 target plate at
Ous. 0.5us, 1.0us, 1.5us (a, b, ¢, d respectively) after impact.
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Figure 6.10(2) Void-volume fraction contour plots for 12.5mm thick Alyie0 target
plate at 2ps, 2.5us, Sus and 20us (e, f, g, h respectively) after impact.
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Figure 6.15(1) Temperature contour plots for 1.59mm thick Al target plate at
Ops, 0.5us, 1.0ps, 1.5ps (a, b, c, d respectively) after impact.
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Figure 6.15(2) Temperature contour plots for 1.59mm thick Al
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Figure 6.16(1) Void-volume fraction contour plots for 1.59mm thick Al ;g0 target
plate at Ops, 0.5us, 1.0us, 1.5us (a, b, ¢, d respectively) after impact.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

The literature review presented in Chapter 1 demonstrated the necessity to
improve upon the constitutive models used for the simulation of high shock loading
problems, especially in relation to hypervelocity impact. As was stated earlier,‘ the
development of advanced constitutive models for the simulation of hypervelocity impacts
is of primary importance to the Aerospace and Defense industry. For this reason, the
goal of the research work presented in this dissertation was to develop a constitutive-
microdamage model that can describe thermo-mechanical deformation associated with
high shock compression, release, dilatation and shear, and the progressive microdamage

that leads to fracture of ductile polycrystalline matenals.

7.2 Summary
At the beginning of this dissertation, a review of appropriate literature was
conducted and a brief description of the most relevant papers was presented in Chapter 1.
The first stage in the development of the constitutive model was the formulation
of the Rankine-Hugoniot relations presented in Chapter 2, which were derived from the
“jump conditions” across a shock wave and coupled with the Us-Up (shock speed to

particle speed) empirical linear relation. The Rankine-Hugoniot relations were used to
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give the final form of the Mie-Gruneisen Equation of State, which was developed with
detail in Chapter 3.

The focal point of the work presented in this dissertation is the development of the
microdamage constitutive model that describes the thermo-elastic and thermo-
viscoplastic behavior of polycrystalline materials, as well as microdamage evolution in
the form of microvoid nucleation growth and coalescence. The development of the
microdamage constitutive models is presented in Chapter 4.

Due to the limitations imposed by the numerical framework upon which the
Autodyn code is built, a series of simplifications had to be imposed on the
implementation of the microdamage constitutive model. These simplifications affected
the plastic rate of deformation equation, the microvoid growth rate equation and the
temperature rate equation in the manner described in Chapter 5.

To test the performance of the microdamage constitutive model, a series of three
hvpervelocity impact laboratory experiments were sslected for simulation. These three
expcrim::;uscovered a wide range of projectile diameter-target thickness rations. In the
three ‘impact simulations Aljgo target plates were impacted with soda-lime glass spherical
projectiles at 6.0 km/s. A detailed description of the laboratory experiments, simulation

parameters and simulation results were given in Chapter 6.




7.3 Conclusions

The following conclusions can be reached from the research work discussed in the

previous chapters:

a)

b)

c)

d)

The microdamage constitutive model as implemented in the Autodyn™ code
successfully simulafed the depth of penetration and crater diameter for the
12.5mm thick target plate (Case A) with an error below five percent.

The diameter of the spall for the 12.5mm thick target plate (Case A) was
under predicted by thirty three percent. It is the view of the author that this
error could be reduced if some of the material parameters presented in Table
6.2 were modified. However, the decision was made to keep the material
parameters within the ranges listed in the literature.

The constitutive model successfully predicted the diameter of the penetr.ation
hole in the 7.61mm thick plate (Case B) to within a four p‘ercent error.

There is a discrepancy in the extent of spall detachment for the 7.61mm thick
plate (Case B) betwzzn t+_ numerical simulation and the laboratory
experiment, but in general, the main deformation and fracture features are
reasonably simulated.

The constitutive model successfully predicted the diameter of the penetration
hole in the 1.59mm thick plate (Case C) to within a four percent error.

The existence of microdamage developed close to the wall of the penetration
hole in the 1.59mm thick plate (Case C) cannot be corroborated, since there

are no radiographs available of the state of the target plate at approximately
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1.0ps after impact for the actual laboratory experiment. Even though it is not
possible to corroborate the existence of microvoid damage, the fact that the
numerical simulation shows rough surfaces on the wall of the peﬁetration
hole, while the experiment does not, seems to indicate that the micrc lamage
process might not be presént in the actual laboratory experiment.

g) The discrepancies between the numerical simulations and experimental results
described in conclusions (d) and (f) seem to indicate that there i; the
possibility that another failure mechanism, such as shear band formation; that
is not taken into account in the model simulation, is present in the laboratory

experiment.

7.4 Recommendations

Because of the discrepancies mentioned previously, 1t is recommended that the
microdamage evolution model be complemented by a shear or shear band failure model.
This would improve the constitutive model presented here and would r..end 1its
successful applicability to a wider range of projectile diameter to target plate thickness
ratios.

It is also recommended that the microdamage constitutive model be implemented
for a Eulerian type grid. This would eliminate the necessity to implement an “efoding“
algéﬁthm to eliminate highly deformed cells, and to simulate fracture in the form
described in Chapter 6. Furthermore, the possibility of doing simulations in a three-

dimensional configuration should be considered. This should be done because in the
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actual laboratory experiment, the axial symmetry is only present until the spall detaches
and petal shape fracture begins to develop. This could be the reason for the discrepancies
in the detached spall fracture mentioned in conclusion (d).

The microvoid nucleation model is considered by the author to be cne of the least
developed components of the microdamage constitutive model presented here. In the
literature review conducted as part of the research program, there are no reports of studies
of the nucleation process under mean stresses that are at least one order of magnitude
greater that the nucleation threshold, and at strain rates of the order of 108 s, as is the
case in the hypervelocity impact experiments discussed in the simulations part of this
dissertation. Even though the microvoid nucleation model was improved here by
incorporating a strain and strain rate dependent nucleation threshold, it is the view of the
author that further research has to be conducted on this subject.

As already mentioned, the energy rate equation (4.86) was derived trough the use
of the energy rate balance equation that applies to any material under any loading
condition, but it presented difficulties in its numerical implementati~z, as described in
Section 5.1.3. and the model already implemented in Autodyn™ had to be used instead.
Funhermore; it was demonstrated in Section 6.4 that there is a significant difference in
the temperatures calculated with the energy rate balance equation (4.86) and the
calculation with classical thermodynamics, upon which the Autodyn™ mode! is based on
in part. For this reason, further research has to be conducted to determine which

calculation predicts the actual experimental temperature under hypervelocity impact more
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accurately. This is a challenging problem because of the difficulties in measuring

temperature fluctuations, in laboratory experiments, that last only a few nanoseconds.
Lastly, it is recommended that the model be tested for different projectile and

target materials. Thic would give more conﬁaence in the implementation of the

microdamage constitutive model presented in this dissertation.
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